3 research outputs found

    Investigation of the Dynamic Strain Aging Effect in Austenitic Weld Metals by 3D-DIC

    No full text
    Austenitic stainless steels similar to type AISI 316L are widely used structural materials in current and future nuclear reactors. Careful development and characterization of these materials and their welds is needed to verify the structural integrity of large-scale multicomponent structures. Understanding the local deformation behavior in heterogeneous materials and the mechanisms involved is key to further improve the performance and reliability of the materials at the global scale and can help in developing more accurate models and design rules. The full-field 3D digital image correlation (3D-DIC) technique was used to characterize two 316L multi-pass welds, based on cylindrical uniaxial tensile tests at room temperature, 350 °C, and 450 °C. The results were compared to solution annealed 316L material. The inhomogeneous character and dynamic behavior of the 316L base and weld materials were successfully characterized using 3D-DIC data, yielding high-quality and accurate local strain calculations for geometrically challenging conditions. The difference in character of the dynamic strain aging (DSA) effect present in base and weld materials was identified, where local inhomogeneous straining in weld material resulted in discontinuous type A Portevin–Le Châtelier (PLC) bands. This technique characterized the difference between local and global material behavior, whereas standard mechanical tests could not.Team Maria Santofimia Navarr

    Confirming Debonding of Non-Metallic Inclusions as an Important Factor in Damage Initiation in Bearing Steel

    No full text
    Damage in bearings is closely associated with the presence of microstructural alterations, known as white etching areas (WEAs) and white etching cracks (WECs). One of the main reasons for the creation of these microstructural alterations is the presence of defects in the material, such as non-metallic inclusions. Manganese sulfides and aluminum oxides are widely reported in the literature as the most common types of non-metallic inclusions found in bearing steels. This study classifies 280 non-metallic inclusions in an investigated bearing steel according to several criteria: bonded/debonded with the matrix, size, shape, orientation angle, depth below the raceway surface, and chemical composition. Contrary to the findings in the literature, this investigation reports that the chemical composition of the inclusion (MnS + Al2O3) is of secondary importance when considering factors for damage initiation. The orientation of the microstructural alterations is observed to coincide with the high-stress regions, indicating a relation between the formation of butterfly wings and the white etching crack. In our investigation, butterfly wings typically exhibit a 45-degree pattern originating from the non-metallic inclusions. Conversely, the white etching crack starts from the non-metallic inclusion at a shallower angle in correspondence to the raceway. This can be attributed to the stress state, which corresponds to a region where extensive white etching cracks are formed. In conclusion, the microstructural observations demonstrate that the state of non-metallic inclusion—i.e., whether they are bonded or not to the steel matrix—plays an essential role in initiating rolling contact fatigue damage.Team Maria Santofimia Navarr
    corecore