3 research outputs found

    Behavioral intentions and action plans promote physical exercise : a longitudinal study with orthopedic rehabilitation patients.

    No full text
    COA6/C1ORF31 is involved in cytochrome c oxidase (complex IV) biogenesis. We present a new pathogenic COA6 variant detected in a patient with neonatal hypertrophic cardiomyopathy and isolated complex IV deficiency. For the first time, clinical details about a COA6-deficient patient are given and patient fibroblasts are functionally characterized: COA6 protein is undetectable and steady-state levels of complex IV and several of its subunits are reduced. The monomeric COX1 assembly intermediate accumulates. Using pulse-chase experiments, we demonstrate an increased turnover of mitochondrial encoded complex IV subunits. Although monomeric complex IV is decreased in patient fibroblasts, the CI/CIII2 /CIVn -supercomplexes remain unaffected. Copper supplementation shows a partial rescue of complex IV deficiency in patient fibroblasts. We conclude that COA6 is required for complex IV subunit stability. Furthermore, the proposed role in the copper delivery pathway to complex IV subunits is substantiated and a therapeutic lead for COA6-deficient patients is provided

    Whole-genome analysis reveals that mutations in inositol polyphosphate phosphatase-like 1 cause opsismodysplasia.

    No full text
    Opsismodysplasia is a rare, autosomal-recessive skeletal dysplasia characterized by short stature, characteristic facial features, and in some cases severe renal phosphate wasting. We used linkage analysis and whole-genome sequencing of a consanguineous trio to discover that mutations in inositol polyphosphate phosphatase-like 1 (INPPL1) cause opsismodysplasia with or without renal phosphate wasting. Evaluation of 12 families with opsismodysplasia revealed that INPPL1 mutations explain ~60% of cases overall, including both of the families in our cohort with more than one affected child and 50% of the simplex cases

    Can untreated PKU patients escape from intellectual disability? A systematic review

    Get PDF
    Contains fulltext : 195728.pdf (publisher's version ) (Open Access)BACKGROUND: Phenylketonuria (PKU) is often considered as the classical example of a genetic disorder in which severe symptoms can nowadays successfully be prevented by early diagnosis and treatment. In contrast, untreated or late-treated PKU is known to result in severe intellectual disability, seizures, and behavioral disturbances. Rarely, however, untreated or late-diagnosed PKU patients with high plasma phenylalanine concentrations have been reported to escape from intellectual disability. The present study aimed to review published cases of such PKU patients. METHODS: To this purpose, we conducted a literature search in PubMed and EMBASE up to 8th of September 2017 to identify cases with 1) PKU diagnosis and start of treatment after 7 years of age; 2) untreated plasma phenylalanine concentrations >/=1200 mumol/l; and 3) IQ >/=80. Literature search, checking reference lists, selection of articles, and extraction of data were performed by two independent researchers. RESULTS: In total, we identified 59 published cases of patients with late-diagnosed PKU and unexpected favorable outcome who met the inclusion criteria. Although all investigated patients had intellectual functioning within the normal range, at least 19 showed other neurological, psychological, and/or behavioral symptoms. CONCLUSIONS: Based on the present findings, the classical symptomatology of untreated or late-treated PKU may need to be rewritten, not only in the sense that intellectual dysfunction is not obligatory, but also in the sense that intellectual functioning does not (re)present the full picture of brain damage due to high plasma phenylalanine concentrations. Further identification of such patients and additional analyses are necessary to better understand these differences between PKU patients
    corecore