61 research outputs found

    Human Calmodulin Methyltransferase: Expression, Activity on Calmodulin, and Hsp90 Dependence

    Get PDF
    Deletion of the first exon of calmodulin-lysine N-methyltransferase (CaM KMT, previously C2orf34) has been reported in two multigene deletion syndromes, but additional studies on the gene have not been reported. Here we show that in the cells from 2p21 deletion patients the loss of CaM KMT expression results in accumulation of hypomethylated calmodulin compared to normal controls, suggesting that CaM KMT is essential for calmodulin methylation and there are no compensatory mechanisms for CaM methylation in humans. We have further studied the expression of this gene at the transcript and protein levels. We have identified 2 additional transcripts in cells of the 2p21 deletion syndrome patients that start from alternative exons positioned outside the deletion region. One of them starts in the 2nd known exon, the other in a novel exon. The transcript starting from the novel exon was also identified in a variety of tissues from normal individuals. These new transcripts are not expected to produce proteins. Immunofluorescent localization of tagged CaM KMT in HeLa cells indicates that it is present in both the cytoplasm and nucleus of cells whereas the short isoform is localized to the Golgi apparatus. Using Western blot analysis we show that the CaM KMT protein is broadly expressed in mouse tissues. Finally we demonstrate that the CaM KMT interacts with the middle portion of the Hsp90 molecular chaperon and is probably a client protein since it is degraded upon treatment of cells with the Hsp90 inhibitor geldanamycin. These findings suggest that the CaM KMT is the major, possibly the single, methyltransferase of calmodulin in human cells with a wide tissue distribution and is a novel Hsp90 client protein. Thus our data provides basic information for a gene potentially contributing to the patient phenotype of two contiguous gene deletion syndromes

    The role of anion gap normalization time in the management of pediatric diabetic ketoacidosis

    Get PDF
    IntroductionOur aims were to determine whether anion gap normalization time (AGNT) correlates with risk factors related to the severity of diabetic ketoacidosis (DKA) in children, and to characterize AGNT as a criterion for DKA resolution in children admitted with moderate or severe disease.MethodsA ten-year retrospective cohort study of children admitted to the intensive care unit with DKA. We used a survival analysis approach to determine changes in serum glucose, bicarbonate, pH, and anion gap following admission. Using multivariate analysis, we examined associations between patients' demographic and laboratory characteristics with delayed normalization of the anion gap.ResultsA total of 95 patients were analyzed. The median AGNT was 8 h. Delayed AGNT (>8 h) correlated with pH < 7.1 and serum glucose >500 mg/dL. In multivariate analysis, glucose >500 mg/dL was associated with an increased risk for delayed AGNT, by 3.41 fold. Each 25 mg/dL elevation in glucose was associated with a 10% increment in risk for delayed AGNT. Median AGNT preceded median PICU discharge by 15 h (8 vs. 23 h).DiscussionAGNT represents a return to normal glucose-based physiology and an improvement in dehydration. The correlation observed between delayed AGNT and markers of DKA severity supports the usefulness of AGNT for assessing DKA recovery

    Hypoparathyroidism-retardation-dysmorphism syndrome—Clinical insights from a large longitudinal cohort in a single medical center

    Get PDF
    BackgroundHypoparathyroidism, retardation, and dysmorphism (HRD) Syndrome is a rare disease composed of hypoparathyroidism, retardation of both growth and development, and distinctive dysmorphic features. Here, we describe the long-term morbidity and mortality in a large cohort of HRD patients and suggest recommendations for follow up and treatment.MethodsMedical records of 63 HRD syndrome patients who were followed at Soroka Medical Center during 1989–2019 were reviewed retrospectively. Information regarding demographics, medical complications, laboratory findings, and imaging studies was collected.ResultsThe mortality rate was 52%. The main causes of death were infectious diseases including pneumonia, septic shock, and meningitis. Multiple comorbidities were found including brain anomalies in 90% of examined patients (basal ganglia calcifications, tightening of corpus callosum, Chiari malformation, hydrocephalous, and brain atrophy), seizures in 62%, nephrocalcinosis and/or nephrolithiasis in 47%, multiple eye anomalies were recorded in 40%, bowel obstructions in 9.5%, and variable expression of both conductive and senso-neural hearing loss was documented in 9.5%.ConclusionHRD is a severe multisystem disease. Active surveillance is indicated to prevent and treat complications associated with this rare syndrome

    Childhood Obesity

    Get PDF
    In March 2004 a group of 65 physicians and other health professionals representing nine countries on four continents convened in Israel to discuss the widespread public health crisis in childhood obesity. Their aim was to explore the available evidence and develop a consensus on the way forward. The process was rigorous, although time and resources did not permit the development of formal evidence-based guidelines. In the months before meeting, participants were allocated to seven groups covering prevalence, causes, risks, prevention, diagnosis, treatment, and psychology. Through electronic communication each group selected the key issues for their area, searched the literature, and developed a draft document. Over the 3-d meeting, these papers were debated and finalized by each group before presenting to the full group for further discussion and agreement. In developing a consensus statement, this international group has presented the evidence, developed recommendations, and provided a platform aimed toward future corrective action and ongoing debate in the international community

    Single nucleotide RNA choreography

    Get PDF
    © The Authors 2006. Published by Oxford University Press. The definitive version is available online at: http://dx.doi.org/10.1093/nar/gkj500DOI: 10.1093/nar/gkj500New structural analysis methods, and a tree formalism re-define and expand the RNA motif concept, unifying what previously appeared to be disparate groups of structures. We find RNA tetraloops at high frequencies, in new contexts, with unexpected lengths, and in novel topologies. The results, with broad implications for RNA structure in general, show that even at this most elementary level of organization, RNA tolerates astounding variation in conformation, length, sequence and context. However the variation is not random; it is well described by four distinct modes, which are 3-2 switches (backbone topology variations), insertions, deletions and strand clips

    Controlling activated surface diffusion by external fields

    No full text
    A theory is presented for the diffusion coefficient and the hopping distribution of an adatom on a surface in the presence of external fields. Relatively simple expressions are derived for the probability of multiple hops in the exponential hopping limit. This limit is the one which is usually found in the diffusion of a metal atom on a metal surface. In this limit the barrier height (in units of k B T) is large compared with the bias created by the field and the energy loss of the particle as it traverses from one barrier to the next. The hopping distribution is obtained for constant and time varying fields in the adiabatic limit. Typically, the presence of an external field will increase the probability of long hops. The magnitude of the field needed to appreciably increase the probability of multiple hop
    • …
    corecore