476 research outputs found

    A new perturbation treatment applied to the transport through a quantum dot

    Full text link
    Resonant tunnelling through an Anderson impurity is investigated by employing a new perturbation scheme at nonequilibrium. This new approach gives the correct weak and strong coupling limit in UU by introducing adjustable parameters in the self-energy and imposing self-consistency of the occupation number of the impurity. We have found that the zero-temperature linear response conductance agrees well with that obtained from the exact sum rule. At finite temperature the conductance shows a nonzero minimum at the Kondo valley, as shown in recent experiments. The effects of an applied bias voltage on the single-particle density of states and on the differential conductances are discussed for Kondo and non-Kondo systems.Comment: 4 pages, 4 figures, submitted to PRB-Rapid Comm. Email addresses [email protected], [email protected]

    Transport through Quantum Dots: Analytic Results from Integrability

    Full text link
    Recent experiments have probed quantum dots through transport measurements in the regime where they are described by a two lead Anderson model. In this paper we develop a new method to analytically compute for the first time the corresponding transport properties. This is done by using the exact solvability of the Anderson Hamiltonian, together with a generalization of the Landauer-Buttiker approach to integrable systems. The latter requires proper identification of scattering states, a complex and crucial step in our approach. In the Kondo regime, our results include the zero-field, finite temperature linear response conductance, as well as the zero-temperature, non-equilibrium conductance in an applied Zeeman field.Comment: 5 pages, 3 figure

    On the Inequivalence of Weak-Localization and Coherent Backscattering

    Full text link
    We define a current-conserving approximation for the local conductivity tensor of a disordered system which includes the effects of weak localization. Using this approximation we show that the weak localization effect in conductance is not obtained simply from the diagram corresponding to the coherent back-scattering peak observed in optical experiments. Other diagrams contribute to the effect at the same order and decrease its value. These diagrams appear to have no semiclassical analogues, a fact which may have implications for the semiclassical theory of chaotic systems. The effects of discrete symmetries on weak localization in disordered conductors is evaluated and and compared to results from chaotic scatterers.Comment: 24 pages revtex + 12 figures on request; hub.94.

    Many Body Effects on Electron Tunneling through Quantum Dots in an Aharonov-Bohm Circuit

    Full text link
    Tunneling conductance of an Aharonov-Bohm circuit including two quantum dots is calculated based on the general expression of the conductance in the linear response regime of the bias voltage. The calculation is performed in a wide temperature range by using numerical renormalization group method. Various types of AB oscillations appear depending on the temperature and the potential depth of the dots. Especially, AB oscillations have strong higher harmonics components as a function of the magnetic flux when the potential of the dots is deep. This is related to the crossover of the spin state due to the Kondo effect on quantum dots. When the temperature rises up, the amplitude of the AB oscillations becomes smaller reflecting the breaking of the coherency.Comment: 21 pages, 11 PostScript figures, LaTeX, uses jpsj.sty epsbox.st

    Kondo effect in coupled quantum dots under magnetic fields

    Full text link
    The Kondo effect in coupled quantum dots is investigated theoretically under magnetic fields. We show that the magnetoconductance (MC) illustrates peak structures of the Kondo resonant spectra. When the dot-dot tunneling coupling VCV_C is smaller than the dot-lead coupling Δ\Delta (level broadening), the Kondo resonant levels appear at the Fermi level (EFE_F). The Zeeman splitting of the levels weakens the Kondo effect, which results in a negative MC. When VCV_{C} is larger than Δ\Delta, the Kondo resonances form bonding and anti-bonding levels, located below and above EFE_F, respectively. We observe a positive MC since the Zeeman splitting increases the overlap between the levels at EFE_F. In the presence of the antiferromagnetic spin coupling between the dots, the sign of MC can change as a function of the gate voltage.Comment: 6 pages, 3 figure
    • …
    corecore