1,058 research outputs found
Teaching Faulkner
Teaching Faulkner I: Faulkner\u27s Use of Landscape / Arlie E. Herron. Barnard ObservatoryTeaching Faulkner II: Open Topic / Robert W. Hamblin, James B. Carothers, and Charles A. Peek. Yerby Auditoriu
Polarization Gradient Study of Interstellar Medium Turbulence Using The Canadian Galactic Plane Survey
We have investigated the magneto-ionic turbulence in the interstellar medium
through spatial gradients of the complex radio polarization vector in the
Canadian Galactic Plane Survey (CGPS). The CGPS data cover 1300 square-degrees,
over the range ,
with an extension to
in the range , and arcminute
resolution at 1420 MHz. Previous studies found a correlation between the
skewness and kurtosis of the polarization gradient and the Mach number of the
turbulence, or assumed this correlation to deduce the Mach number of an
observed turbulent region. We present polarization gradient images of the
entire CGPS dataset, and analyze the dependence of these images on angular
resolution. The polarization gradients are filamentary, and the length of these
filaments is largest towards the Galactic anti-center, and smallest towards the
inner Galaxy. This may imply that small-scale turbulence is stronger in the
inner Galaxy, or that we observe more distant features at low Galactic
longitudes. For every resolution studied, the skewness of the polarization
gradient is influenced by the edges of bright polarization gradient regions,
which are not related to the turbulence revealed by the polarization gradients.
We also find that the skewness of the polarization gradient is sensitive to the
size of the box used to calculate the skewness, but insensitive to Galactic
longitude, implying that the skewness only probes the number and magnitude of
the inhomogeneities within the box. We conclude that the skewness and kurtosis
of the polarization gradient are not ideal statistics for probing natural
magneto-ionic turbulence.Comment: 21 pages, 15 figures, accepted by Ap
Teaching Faulkner
Teaching Faulkner I / James B. Carothers and Robert W. Hamblin. Yerby AuditoriumTeaching Faulkner II / Arlie E. Herron and Charles A. Peek. Barnard Observator
Advanced Diagnostics for the Study of Linearly Polarized Emission. II: Application to Diffuse Interstellar Radio Synchrotron Emission
Diagnostics of polarized emission provide us with valuable information on the
Galactic magnetic field and the state of turbulence in the interstellar medium,
which cannot be obtained from synchrotron intensity alone. In Paper I (Herron
et al. 2017b), we derived polarization diagnostics that are rotationally and
translationally invariant in the - plane, similar to the polarization
gradient. In this paper, we apply these diagnostics to simulations of ideal
magnetohydrodynamic turbulence that have a range of sonic and Alfv\'enic Mach
numbers. We generate synthetic images of Stokes and for these
simulations, for the cases where the turbulence is illuminated from behind by
uniform polarized emission, and where the polarized emission originates from
within the turbulent volume. From these simulated images we calculate the
polarization diagnostics derived in Paper I, for different lines of sight
relative to the mean magnetic field, and for a range of frequencies. For all of
our simulations, we find that the polarization gradient is very similar to the
generalized polarization gradient, and that both trace spatial variations in
the magnetoionic medium for the case where emission originates within the
turbulent volume, provided that the medium is not supersonic. We propose a
method for distinguishing the cases of emission coming from behind or within a
turbulent, Faraday rotating medium, and a method to partly map the rotation
measure of the observed region. We also speculate on statistics of these
diagnostics that may allow us to constrain the physical properties of an
observed turbulent region.Comment: 34 pages, 25 figures, accepted for publication in Ap
Density Functional Study of Cubic to Rhombohedral Transition in -AlF
Under heating, -AlF undergoes a structural phase transition from
rhombohedral to cubic at temperature around 730 K. The density functional
method is used to examine the =0 energy surface in the structural parameter
space, and finds the minimum in good agreement with the observed rhombohedral
structure. The energy surface and electronic wave-functions at the minimum are
then used to calculate properties including density of states, -point
phonon modes, and the dielectric function. The dipole formed at each fluorine
ion in the low temperature phase is also calculated, and is used in a classical
electrostatic picture to examine possible antiferroelectric aspects of this
phase transition.Comment: A 6-page manuscript with 4 figures and 4 table
Review of Pioneers of Quantum Chemistry
There is little doubt that reading books other than textbooks represents an important component of maintaining knowledge for many chemistry educators. Nonetheless, with 30 or more books a year being produced by the ACS Symposium Series alone, how can choices be made about what merits reading time? Certainly, the presentation of current research trends that might influence the chemistry taught in courses represents one metric, but there are many additional worthy books. In terms of potential teaching treasures to be mined, time spent reading history of science presents a strong possibility
Synthesis of CdS and CdSe nanocrystallites using a novel single-molecule precursors approach
The synthesis of CdS and CdSe nanocrystallites using the thermolysis of several dithioor
diselenocarbamato complexes of cadmium in trioctylphosphine oxide (TOPO) is reported.
The nanodispersed materials obtained show quantum size effects in their optical spectra
and exhibit near band-edge luminescence. The influence of experimental parameters on
the properties of the nanocrystallites is discussed. HRTEM images of these materials show
well-defined, crystalline nanosized particles. Standard size fractionation procedures can
be performed in order to narrow the size dispersion of the samples. The TOPO-capped CdS
and CdSe nanocrystallites and simple organic bridging ligands, such as 2,2¢-bipyrimidine,
are used as the starting materials for the preparation of novel nanocomposites. The optical
properties shown by these new nanocomposites are compared with those of the starting
nanodispersed materials
Recommended from our members
Amyloid-β nanotubes are associated with prion protein-dependent synaptotoxicity
Growing evidence suggests water-soluble, non-fibrillar forms of amyloid-β protein (Aβ) have important roles in Alzheimer’s disease with toxicities mimicked by synthetic Aβ1–42. However, no defined toxic structures acting via specific receptors have been identified and roles of proposed receptors, such as prion protein (PrP), remain controversial. Here we quantify binding to PrP of Aβ1–42 after different durations of aggregation. We show PrP-binding and PrP-dependent inhibition of long-term potentiation (LTP) correlate with the presence of protofibrils. Globular oligomers bind less avidly to PrP and do not inhibit LTP, whereas fibrils inhibit LTP in a PrP-independent manner. That only certain transient Aβ assemblies cause PrP-dependent toxicity explains conflicting reports regarding the involvement of PrP in Aβ-induced impairments. We show that these protofibrils contain a defined nanotubular structure with a previously unidentified triple helical conformation. Blocking the formation of Aβ nanotubes or their interaction with PrP might have a role in treatment of Alzheimer’s disease
- …