13,336 research outputs found

    Cooling Effect of the Richtmyer-Meshkov Instability

    Full text link
    We provide numerical evidence that the Richtmyer-Meshkov (RM) instability contributes to the cooling of a relativistic fluid. Due to the presence of jet particles traveling throughout the medium, shock waves are generated in the form of Mach cones. The interaction of multiple shock waves can trigger the RM instability, and we have found that this process leads to a down-cooling of the relativistic fluid. To confirm the cooling effect of the instability, shock tube Richtmyer-Meshkov instability simulations are performed. Additionally, in order to provide an experimental observable of the RM instability resulting from the Mach cone interaction, we measure the two particle correlation function and highlight the effects of the interaction. The simulations have been performed with an improved version of the relativistic lattice Boltzmann model, including general equations of state and external forces.Comment: 10 pages, 6 figure

    Ising model on the Apollonian network with node dependent interactions

    Full text link
    This work considers an Ising model on the Apollonian network, where the exchange constant Ji,j∼1/(kikj)μJ_{i,j}\sim1/(k_ik_j)^\mu between two neighboring spins (i,j)(i,j) is a function of the degree kk of both spins. Using the exact geometrical construction rule for the network, the thermodynamical and magnetic properties are evaluated by iterating a system of discrete maps that allows for very precise results in the thermodynamic limit. The results can be compared to the predictions of a general framework for spins models on scale-free networks, where the node distribution P(k)∼k−γP(k)\sim k^{-\gamma}, with node dependent interacting constants. We observe that, by increasing μ\mu, the critical behavior of the model changes, from a phase transition at T=∞T=\infty for a uniform system (μ=0)(\mu=0), to a T=0 phase transition when μ=1\mu=1: in the thermodynamic limit, the system shows no exactly critical behavior at a finite temperature. The magnetization and magnetic susceptibility are found to present non-critical scaling properties.Comment: 6 figures, 12 figure file

    Laboratory Bounds on Electron Lorentz Violation

    Get PDF
    Violations of Lorentz boost symmetry in the electron and photon sectors can be constrained by studying several different high-energy phenomenon. Although they may not lead to the strongest bounds numerically, measurements made in terrestrial laboratories produce the most reliable results. Laboratory bounds can be based on observations of synchrotron radiation, as well as the observed absences of vacuum Cerenkov radiation. Using measurements of synchrotron energy losses at LEP and the survival of TeV photons, we place new bounds on the three electron Lorentz violation coefficients c_(TJ), at the 3 x 10^(-13) to 6 x 10^(-15) levels.Comment: 18 page

    One-loop corrections, uncertainties and approximations in neutralino annihilations: Examples

    Full text link
    The extracted value of the relic density has reached the few per-cent level precision. One can therefore no longer content oneself with calculations of this observable where the annihilation processes are computed at tree-level, especially in supersymmetry where radiative corrections are usually large. Implementing full one-loop corrections to all annihilation processes that would be needed in a scan over parameters is a daunting task. On the other hand one may ask whether the bulk of the corrections are taken into account through effective couplings of the neutralino that improve the tree-level calculation and would be easy to implement. We address this issue by concentrating in this first study on the neutralino coupling to i) fermions and sfermions and ii) Z. After constructing the effective couplings we compare their efficiency compared to the full one-loop calculation and comment on the failures and success of the approach. As a bonus we point out that large non decoupling effects of heavy sfermions could in principle be measured in the annihilation process, a point of interest in view of the latest limit on the squark masses from the LHC. We also comment on the scheme dependencies of the one-loop corrected results
    • …
    corecore