96 research outputs found

    Growth factor and co-receptor release by structural regulation of substrate metalloprotease accessibility

    Get PDF
    Release of cytokines, growth factors and other life-essential molecules from precursors by a-disintegrin-and-metalloproteases (ADAMs) is regulated with high substrate-specificity. We hypothesized that this is achieved by cleavage-regulatory intracellular-domain (ICD)-modifications of the precursors. We show here that cleavage-stimuli-induced specific ICD-modifications cause structural substrate changes that enhance ectodomain sensitivity of neuregulin-1 (NRG1; epidermal-growth-factor) or CD44 (receptor-tyrosine-kinase (RTK) co-receptor) to chymotrypsin/trypsin or soluble ADAM. This inside-out signal transfer required substrate homodimerization and was prevented by cleavage-inhibitory ICD-mutations. In chimeras, regulation could be conferred to a foreign ectodomain, suggesting a common higher-order structure. We predict that substrate-specific protease-accessibility-regulation controls release of numerous ADAM substrates

    TRIP6 functions in brain ciliogenesis

    Get PDF
    TRIP6, a member of the ZYXIN-family of LIM domain proteins, is a focal adhesion compo- nent. Trip6 deletion in the mouse, reported here, reveals a function in the brain: ependymal and choroid plexus epithelial cells are carrying, unexpectedly, fewer and shorter cilia, are poorly differentiated, and the mice develop hydrocephalus. TRIP6 carries numerous protein interaction domains and its functions require homodimerization. Indeed, TRIP6 disruption in vitro (in a choroid plexus epithelial cell line), via RNAi or inhibition of its homodimerization, confirms its function in ciliogenesis. Using super-resolution microscopy, we demonstrate TRIP6 localization at the pericentriolar material and along the ciliary axoneme. The requirement for homodimerization which doubles its interaction sites, its punctate localiza- tion along the axoneme, and its co-localization with other cilia components suggest a scaf- fold/co-transporter function for TRIP6 in cilia. Thus, this work uncovers an essential role of a LIM-domain protein assembly factor in mammalian ciliogenesis

    CD44 Promotes Intoxication by the Clostridial Iota-Family Toxins

    Get PDF
    International audienceVarious pathogenic clostridia produce binary protein toxins associated with enteric diseases of humans and animals. Separate binding/translocation (B) components bind to a protein receptor on the cell surface, assemble with enzymatic (A) component(s), and mediate endocytosis of the toxin complex. Ultimately there is translocation of A component(s) from acidified endosomes into the cytosol, leading to destruction of the actin cytoskeleton. Our results revealed that CD44, a multifunctional surface protein of mammalian cells, facilitates intoxication by the iota family of clostridial binary toxins. Specific antibody against CD44 inhibited cytotoxicity of the prototypical Clostridium perfringens iota toxin. Versus CD44(+) melanoma cells, those lacking CD44 bound less toxin and were dose-dependently resistant to C. perfringens iota, as well as Clostridium difficile and Clostridium spiroforme iota-like, toxins. Purified CD44 specifically interacted in vitro with iota and iota-like, but not related Clostridium botulinum C2, toxins. Furthermore, CD44 knockout mice were resistant to iota toxin lethality. Collective data reveal an important role for CD44 during intoxication by a family of clostridial binary toxins

    The QCD heavy-quark potential to order v^2: one loop matching conditions

    Full text link
    The one-loop QCD heavy quark potential is computed to order v^2 in the color singlet and octet channels. Several errors in the previous literature are corrected. To be consistent with the velocity power counting, the full dependence on |p' + p|/|p' - p| is kept. The matching conditions for the NRQCD one-loop potential are computed by comparing the QCD calculation with that in the effective theory. The graphs in the effective theory are also compared to terms from the hard, soft, potential, and ultrasoft regimes in the threshold expansion. The issue of off-shell versus on-shell matching and gauge dependence is discussed in detail for the 1/(m k) term in the potential. Matching on-shell gives a 1/(m k) potential that is gauge independent and does not vanish for QED.Comment: 28 pages, References added and minor changes to section III, results unchange

    RHAMM deficiency disrupts folliculogenesis resulting in female hypofertility

    Get PDF
    The postnatal mammalian ovary contains the primary follicles, each comprising an immature oocyte surrounded by a layer of somatic granulosa cells. Oocytes reach meiotic and developmental competence via folliculogenesis. During this process, the granulosa cells proliferate massively around the oocyte, form an extensive extracellular matrix (ECM) and differentiate into cumulus cells. As the ECM component hyaluronic acid (HA) is thought to form the backbone of the oocyte-granulosa cell complex, we deleted the relevant domain of the Receptor for HA Mediated Motility (RHAMM) gene in the mouse. This resulted in folliculogenesis defects and female hypofertility, although HA-induced signalling was not affected. We report that wild-type RHAMM localises at the mitotic spindle of granulosa cells, surrounding the oocyte. Deletion of the RHAMM C-terminus in vivo abolishes its spindle association, resulting in impaired spindle orientation in the dividing granulosa cells, folliculogenesis defects and subsequent female hypofertility. These data reveal the first identified physiological function for RHAMM, during oogenesis, and the importance of this spindle-associated function for female fertility

    RHAMM deficiency disrupts folliculogenesis resulting in female hypofertility

    Get PDF
    The postnatal mammalian ovary contains the primary follicles, each comprising an immature oocyte surrounded by a layer of somatic granulosa cells. Oocytes reach meiotic and developmental competence via folliculogenesis. During this process, the granulosa cells proliferate massively around the oocyte, form an extensive extracellular matrix (ECM) and differentiate into cumulus cells. As the ECM component hyaluronic acid (HA) is thought to form the backbone of the oocyte-granulosa cell complex, we deleted the relevant domain of the Receptor for HA Mediated Motility (RHAMM) gene in the mouse. This resulted in folliculogenesis defects and female hypofertility, although HA-induced signalling was not affected. We report that wild-type RHAMM localises at the mitotic spindle of granulosa cells, surrounding the oocyte. Deletion of the RHAMM C-terminus in vivo abolishes its spindle association, resulting in impaired spindle orientation in the dividing granulosa cells, folliculogenesis defects and subsequent female hypofertility. These data reveal the first identified physiological function for RHAMM, during oogenesis, and the importance of this spindle-associated function for female fertility
    • …
    corecore