2,162 research outputs found

    Eulerian spectral closures for isotropic turbulence using a time-ordered fluctuation-dissipation relation

    Full text link
    Procedures for time-ordering the covariance function, as given in a previous paper (K. Kiyani and W.D. McComb Phys. Rev. E 70, 066303 (2004)), are extended and used to show that the response function associated at second order with the Kraichnan-Wyld perturbation series can be determined by a local (in wavenumber) energy balance. These time-ordering procedures also allow the two-time formulation to be reduced to time-independent form by means of exponential approximations and it is verified that the response equation does not have an infra-red divergence at infinite Reynolds number. Lastly, single-time Markovianised closure equations (stated in the previous paper above) are derived and shown to be compatible with the Kolmogorov distribution without the need to introduce an ad hoc constant.Comment: 12 page

    Ferromagnetism in the Infinite-U Hubbard Model

    Full text link
    We have studied the stability of the ferromagnetic state in the infinite-U Hubbard model on a square lattice by approximate diagonalization of finite lattices using the density matrix renormalization group technique. By studying lattices with up to 5X20 sites, we have found the ferromagnetic state to be stable below the hole density of 22 percent. Beyond 22 percent of hole doping, the total spin of the ground state decreased gradually to zero with increasing hole density.Comment: 13 pages, RevteX 3.0, seven figures appended in uuencoded form, correcting problems with uuencoded figure

    On the Geometry of Surface Stress

    Full text link
    We present a fully general derivation of the Laplace--Young formula and discuss the interplay between the intrinsic surface geometry and the extrinsic one ensuing from the immersion of the surface in the ordinary euclidean three-dimensional space. We prove that the (reversible) work done in a general surface deformation can be expressed in terms of the surface stress tensor and the variation of the intrinsic surface metric

    Self Consistent Expansion for the Molecular Beam Epitaxy Equation

    Full text link
    Motivated by a controversy over the correct results derived from the dynamic renormalization group (DRG) analysis of the non linear molecular beam epitaxy (MBE) equation, a self-consistent expansion (SCE) for the non linear MBE theory is considered. The scaling exponents are obtained for spatially correlated noise of the general form D(rr,tt)=2D0rr2ρdδ(tt)D({\vec r - \vec r',t - t'}) = 2D_0 | {\vec r - \vec r'} |^{2\rho - d} \delta ({t - t'}). I find a lower critical dimension dc(ρ)=4+2ρd_c (\rho) = 4 + 2\rho , above, which the linear MBE solution appears. Below the lower critical dimension a r-dependent strong-coupling solution is found. These results help to resolve the controversy over the correct exponents that describe non linear MBE, using a reliable method that proved itself in the past by predicting reasonable results for the Kardar-Parisi-Zhang (KPZ) system, where DRG failed to do so.Comment: 16 page

    Spin transport theory in ferromagnet/semiconductor systems with non-collinear magnetization configurations

    Full text link
    We present a comprehensive theory of spin transport in a non-degenerate semiconductor that is in contact with multiple ferromagnetic terminals. The spin dynamics in the semiconductor is studied during a perturbation of a general, non-collinear magnetization configuration and a method is shown to identify the various configurations from current signals. The conventional Landauer-B\"{u}ttiker description for spin transport across Schottky contacts is generalized by the use of a non-linearized I-V relation, and it is extended by taking into account non-coherent transport mechanisms. The theory is used to analyze a three terminal lateral structure where a significant difference in the spin accumulation profile is found when comparing the results of this model with the conventional model.Comment: 17 pages, 10 figure

    Exchange in silicon-based quantum computer architecture

    Full text link
    The silicon-based quantum computer proposal has been one of the intensely pursued ideas during the past three years. Here we calculate the donor electron exchange in silicon and germanium, and demonstrate an atomic-scale challenge for quantum computing in Si (and Ge), as the six (four) conduction band minima in Si (Ge) lead to inter-valley electronic interferences, generating strong oscillations in the exchange splitting of two-donor two-electron states. Donor positioning with atomic scale precision within the unit cell thus becomes a decisive factor in determining the strength of the exchange coupling--a fundamental ingredient for two-qubit operations in a silicon-based quantum computer.Comment: 5 pages, 2 figure

    Pandemic Paradox: Early Life H2N2 Pandemic Influenza Infection Enhanced Susceptibility to Death during the 2009 H1N1 Pandemic.

    Get PDF
    Recent outbreaks of H5, H7, and H9 influenza A viruses in humans have served as a vivid reminder of the potentially devastating effects that a novel pandemic could exert on the modern world. Those who have survived infections with influenza viruses in the past have been protected from subsequent antigenically similar pandemics through adaptive immunity. For example, during the 2009 H1N1 "swine flu" pandemic, those exposed to H1N1 viruses that circulated between 1918 and the 1940s were at a decreased risk for mortality as a result of their previous immunity. It is also generally thought that past exposures to antigenically dissimilar strains of influenza virus may also be beneficial due to cross-reactive cellular immunity. However, cohorts born during prior heterosubtypic pandemics have previously experienced elevated risk of death relative to surrounding cohorts of the same population. Indeed, individuals born during the 1890 H3Nx pandemic experienced the highest levels of excess mortality during the 1918 "Spanish flu." Applying Serfling models to monthly mortality and influenza circulation data between October 1997 and July 2014 in the United States and Mexico, we show corresponding peaks in excess mortality during the 2009 H1N1 "swine flu" pandemic and during the resurgent 2013-2014 H1N1 outbreak for those born at the time of the 1957 H2N2 "Asian flu" pandemic. We suggest that the phenomenon observed in 1918 is not unique and points to exposure to pandemic influenza early in life as a risk factor for mortality during subsequent heterosubtypic pandemics.IMPORTANCE The relatively low mortality experienced by older individuals during the 2009 H1N1 influenza virus pandemic has been well documented. However, reported situations in which previous influenza virus exposures have enhanced susceptibility are rare and poorly understood. One such instance occurred in 1918-when those born during the heterosubtypic 1890 H3Nx influenza virus pandemic experienced the highest levels of excess mortality. Here, we demonstrate that this phenomenon was not unique to the 1918 H1N1 pandemic but that it also occurred during the contemporary 2009 H1N1 pandemic and 2013-2014 H1N1-dominated season for those born during the heterosubtypic 1957 H2N2 "Asian flu" pandemic. These data highlight the heretofore underappreciated phenomenon that, in certain instances, prior exposure to pandemic influenza virus strains can enhance susceptibility during subsequent pandemics. These results have important implications for pandemic risk assessment and should inform laboratory studies aimed at uncovering the mechanism responsible for this effect

    Chewing Through the Miocene: An Examination of the Feeding Musculature in the Ground Sloth Hapalops from South America (Mammalia: Pilosa)

    Get PDF
    Hapalops, a smaller-sized and early sloth of the Megatheroidea, appeared in the middle Miocene Santa Cruz formation of Argentina. This genus is part of the group from which later, larger megatheroids arose, i.e., Nothrotheriops and Megatherium. Many cranial characters support this idea; however Hapalops is not merely a smaller antecedent of the later forms. Specifically, Hapalops retains short anterior caniniform teeth, and a temporomandibular joint elevated above the cheek tooth row; a combination distinct among sloths. An elevated temporomandibular joint occurs in Bradypus, a tree sloth with anterior chisel-shaped teeth instead of caniniforms, and the tree sloth Choloepus, which is aligned with the megalonychids, has anterior caniniforms. Hapalops has an elongated zygomatic ascending process that is reminiscent of that in Bradypus; however, the Bradypus skull is extremely foreshortened while that of Hapalops is elongated, as in nothrotheres, but not deepened as in megatheres. Previous work identified many sloth cranial character complexes, and functional limitations on skull feature combinations. The unique Hapalops character patterns indicate a selective feeder with a mediolaterally oriented grinding stroke during mastication

    Calculations of exchange interaction in impurity band of two-dimensional semiconductors with out of plane impurities

    Full text link
    We calculate the singlet-triplet splitting for a couple of two-dimensional electrons in the potential of two positively charged impurities which are located out of plane. We consider different relations between vertical distances of impurities h1h_1 and h2h_2 and their lateral distance RR. Such a system has never been studied in atomic physics but the methods, worked out for regular two-atomic molecules and helium atom, have been found to be useful. Analytical expressions for several different limiting configurations of impurities are obtained an interpolated formula for intermediate range of parameters is proposed. The RR-dependence of the splitting is shown to become weaker with increasing h1,h2h_1,h_2.Comment: 14 pages, RevTeX, 5 figures. Submitted to Phys Rev.

    Generalized calculation of magnetic coupling constants for Mott-Hubbard insulators: Application to ferromagnetic Cr compounds

    Full text link
    Using a Rayleigh-Schr\"odinger perturbation expansion of multi-band Hubbard models, we present analytic expressions for the super-exchange coupling constants between magnetic transition metal ions of arbitrary separation in Mott-Hubbard insulators. The only restrictions are i) all ligand ions are closed shell anions and ii) all contributing interaction paths are of equal length. For short paths, our results essentially confirm the Goodenough-Kanamori-Anderson rules, yet in general there does not exist any simple rule to predict the sign of the magnetic coupling constants. The most favorable situation for ferromagnetic coupling is found for ions with less than half filled d shells, the (relative) tendency to ferromagnetic coupling increases with increasing path length. As an application, the magnetic interactions of the Cr compounds Rb2_2CrCl4_4, CrCl3_3, CrBr3_3 and CrI3_3 are investigated, all of which except CrCl3_3 are ferromagnets.Comment: 13 pages, 6 eps figures, submitted to Phys Rev
    corecore