2,162 research outputs found
Eulerian spectral closures for isotropic turbulence using a time-ordered fluctuation-dissipation relation
Procedures for time-ordering the covariance function, as given in a previous
paper (K. Kiyani and W.D. McComb Phys. Rev. E 70, 066303 (2004)), are extended
and used to show that the response function associated at second order with the
Kraichnan-Wyld perturbation series can be determined by a local (in wavenumber)
energy balance. These time-ordering procedures also allow the two-time
formulation to be reduced to time-independent form by means of exponential
approximations and it is verified that the response equation does not have an
infra-red divergence at infinite Reynolds number. Lastly, single-time
Markovianised closure equations (stated in the previous paper above) are
derived and shown to be compatible with the Kolmogorov distribution without the
need to introduce an ad hoc constant.Comment: 12 page
Ferromagnetism in the Infinite-U Hubbard Model
We have studied the stability of the ferromagnetic state in the infinite-U
Hubbard model on a square lattice by approximate diagonalization of finite
lattices using the density matrix renormalization group technique. By studying
lattices with up to 5X20 sites, we have found the ferromagnetic state to be
stable below the hole density of 22 percent. Beyond 22 percent of hole doping,
the total spin of the ground state decreased gradually to zero with increasing
hole density.Comment: 13 pages, RevteX 3.0, seven figures appended in uuencoded form,
correcting problems with uuencoded figure
On the Geometry of Surface Stress
We present a fully general derivation of the Laplace--Young formula and
discuss the interplay between the intrinsic surface geometry and the extrinsic
one ensuing from the immersion of the surface in the ordinary euclidean
three-dimensional space. We prove that the (reversible) work done in a general
surface deformation can be expressed in terms of the surface stress tensor and
the variation of the intrinsic surface metric
Self Consistent Expansion for the Molecular Beam Epitaxy Equation
Motivated by a controversy over the correct results derived from the dynamic
renormalization group (DRG) analysis of the non linear molecular beam epitaxy
(MBE) equation, a self-consistent expansion (SCE) for the non linear MBE theory
is considered. The scaling exponents are obtained for spatially correlated
noise of the general form . I find a lower critical dimension , above, which the linear MBE solution appears. Below the
lower critical dimension a r-dependent strong-coupling solution is found. These
results help to resolve the controversy over the correct exponents that
describe non linear MBE, using a reliable method that proved itself in the past
by predicting reasonable results for the Kardar-Parisi-Zhang (KPZ) system,
where DRG failed to do so.Comment: 16 page
Spin transport theory in ferromagnet/semiconductor systems with non-collinear magnetization configurations
We present a comprehensive theory of spin transport in a non-degenerate
semiconductor that is in contact with multiple ferromagnetic terminals. The
spin dynamics in the semiconductor is studied during a perturbation of a
general, non-collinear magnetization configuration and a method is shown to
identify the various configurations from current signals. The conventional
Landauer-B\"{u}ttiker description for spin transport across Schottky contacts
is generalized by the use of a non-linearized I-V relation, and it is extended
by taking into account non-coherent transport mechanisms. The theory is used to
analyze a three terminal lateral structure where a significant difference in
the spin accumulation profile is found when comparing the results of this model
with the conventional model.Comment: 17 pages, 10 figure
Exchange in silicon-based quantum computer architecture
The silicon-based quantum computer proposal has been one of the intensely
pursued ideas during the past three years. Here we calculate the donor electron
exchange in silicon and germanium, and demonstrate an atomic-scale challenge
for quantum computing in Si (and Ge), as the six (four) conduction band minima
in Si (Ge) lead to inter-valley electronic interferences, generating strong
oscillations in the exchange splitting of two-donor two-electron states. Donor
positioning with atomic scale precision within the unit cell thus becomes a
decisive factor in determining the strength of the exchange coupling--a
fundamental ingredient for two-qubit operations in a silicon-based quantum
computer.Comment: 5 pages, 2 figure
Pandemic Paradox: Early Life H2N2 Pandemic Influenza Infection Enhanced Susceptibility to Death during the 2009 H1N1 Pandemic.
Recent outbreaks of H5, H7, and H9 influenza A viruses in humans have served as a vivid reminder of the potentially devastating effects that a novel pandemic could exert on the modern world. Those who have survived infections with influenza viruses in the past have been protected from subsequent antigenically similar pandemics through adaptive immunity. For example, during the 2009 H1N1 "swine flu" pandemic, those exposed to H1N1 viruses that circulated between 1918 and the 1940s were at a decreased risk for mortality as a result of their previous immunity. It is also generally thought that past exposures to antigenically dissimilar strains of influenza virus may also be beneficial due to cross-reactive cellular immunity. However, cohorts born during prior heterosubtypic pandemics have previously experienced elevated risk of death relative to surrounding cohorts of the same population. Indeed, individuals born during the 1890 H3Nx pandemic experienced the highest levels of excess mortality during the 1918 "Spanish flu." Applying Serfling models to monthly mortality and influenza circulation data between October 1997 and July 2014 in the United States and Mexico, we show corresponding peaks in excess mortality during the 2009 H1N1 "swine flu" pandemic and during the resurgent 2013-2014 H1N1 outbreak for those born at the time of the 1957 H2N2 "Asian flu" pandemic. We suggest that the phenomenon observed in 1918 is not unique and points to exposure to pandemic influenza early in life as a risk factor for mortality during subsequent heterosubtypic pandemics.IMPORTANCE The relatively low mortality experienced by older individuals during the 2009 H1N1 influenza virus pandemic has been well documented. However, reported situations in which previous influenza virus exposures have enhanced susceptibility are rare and poorly understood. One such instance occurred in 1918-when those born during the heterosubtypic 1890 H3Nx influenza virus pandemic experienced the highest levels of excess mortality. Here, we demonstrate that this phenomenon was not unique to the 1918 H1N1 pandemic but that it also occurred during the contemporary 2009 H1N1 pandemic and 2013-2014 H1N1-dominated season for those born during the heterosubtypic 1957 H2N2 "Asian flu" pandemic. These data highlight the heretofore underappreciated phenomenon that, in certain instances, prior exposure to pandemic influenza virus strains can enhance susceptibility during subsequent pandemics. These results have important implications for pandemic risk assessment and should inform laboratory studies aimed at uncovering the mechanism responsible for this effect
Chewing Through the Miocene: An Examination of the Feeding Musculature in the Ground Sloth Hapalops from South America (Mammalia: Pilosa)
Hapalops, a smaller-sized and early sloth of the Megatheroidea, appeared in the middle Miocene Santa Cruz formation of Argentina. This genus is part of the group from which later, larger megatheroids arose, i.e., Nothrotheriops and Megatherium. Many cranial characters support this idea; however Hapalops is not merely a smaller antecedent of the later forms. Specifically, Hapalops retains short anterior caniniform teeth, and a temporomandibular joint elevated above the cheek tooth row; a combination distinct among sloths. An elevated temporomandibular joint occurs in Bradypus, a tree sloth with anterior chisel-shaped teeth instead of caniniforms, and the tree sloth Choloepus, which is aligned with the megalonychids, has anterior caniniforms. Hapalops has an elongated zygomatic ascending process that is reminiscent of that in Bradypus; however, the Bradypus skull is extremely foreshortened while that of Hapalops is elongated, as in nothrotheres, but not deepened as in megatheres. Previous work identified many sloth cranial character complexes, and functional limitations on skull feature combinations. The unique Hapalops character patterns indicate a selective feeder with a mediolaterally oriented grinding stroke during mastication
Calculations of exchange interaction in impurity band of two-dimensional semiconductors with out of plane impurities
We calculate the singlet-triplet splitting for a couple of two-dimensional
electrons in the potential of two positively charged impurities which are
located out of plane. We consider different relations between vertical
distances of impurities and and their lateral distance . Such a
system has never been studied in atomic physics but the methods, worked out for
regular two-atomic molecules and helium atom, have been found to be useful.
Analytical expressions for several different limiting configurations of
impurities are obtained an interpolated formula for intermediate range of
parameters is proposed. The -dependence of the splitting is shown to become
weaker with increasing .Comment: 14 pages, RevTeX, 5 figures. Submitted to Phys Rev.
Generalized calculation of magnetic coupling constants for Mott-Hubbard insulators: Application to ferromagnetic Cr compounds
Using a Rayleigh-Schr\"odinger perturbation expansion of multi-band Hubbard
models, we present analytic expressions for the super-exchange coupling
constants between magnetic transition metal ions of arbitrary separation in
Mott-Hubbard insulators. The only restrictions are i) all ligand ions are
closed shell anions and ii) all contributing interaction paths are of equal
length. For short paths, our results essentially confirm the
Goodenough-Kanamori-Anderson rules, yet in general there does not exist any
simple rule to predict the sign of the magnetic coupling constants. The most
favorable situation for ferromagnetic coupling is found for ions with less than
half filled d shells, the (relative) tendency to ferromagnetic coupling
increases with increasing path length. As an application, the magnetic
interactions of the Cr compounds RbCrCl, CrCl, CrBr and CrI
are investigated, all of which except CrCl are ferromagnets.Comment: 13 pages, 6 eps figures, submitted to Phys Rev
- …