1,612 research outputs found

    Magnetic anisotropy and spin-spiral wave in V, Cr and Mn atomic chains on Cu(001) surface: First principles calculations

    Full text link
    Recent ab intio studies of the magnetic properties of all 3d transition metal(TM) freestanding atomic chains predicted that these nanowires could have a giant magnetic anisotropy energy (MAE) and might support a spin-spiral structure, thereby suggesting that these nanowires would have technological applicationsin, e.g., high density magnetic data storages. In order to investigate how the substrates may affect the magnetic properties of the nanowires, here we systematically study the V, Cr and Mn linear atomic chains on the Cu(001) surface based on the density functional theory with the generalized gradient approximation. We find that V, Cr, and Mn linear chains on the Cu(001) surface still have a stable or metastable ferromagnetic state. However, the ferromagnetic state is unstable against formation of a noncollinear spin-spiral structure in the Mn linear chains and also the V linear chain on the atop sites on the Cu(001) surface, due to the frustrated magnetic interactions in these systems. Nonetheless, the presence of the Cu(001) substrate does destabilize the spin-spiral state already present in the freestanding V linear chain and stabilizes the ferromagnetic state in the V linear chain on the hollow sites on Cu(001). When spin-orbit coupling (SOC) is included, the spin magnetic moments remain almost unchanged, due to the weakness of SOC in 3d TM chains. Furthermore, both the orbital magnetic moments and MAEs for the V, Cr and Mn are small, in comparison with both the corresponding freestanding nanowires and also the Fe, Co and Ni linear chains on the Cu (001) surface.Comment: Accepted for publication in J. Phys. D: Applied Physic

    Out-of-plane nesting driven spin spiral in ultrathin Fe/Cu(001) films

    Full text link
    Epitaxial ultrathin Fe films on fcc Cu(001) exhibit a spin spiral (SS), in contrast to the ferromagnetism of bulk bcc Fe. We study the in-plane and out-of-plane Fermi surfaces (FSs) of the SS in 8 monolayer Fe/Cu(001) films using energy dependent soft x-ray momentum-resolved photoemission spectroscopy. We show that the SS originates in nested regions confined to out-of-plane FSs, which are drastically modified compared to in-plane FSs. From precise reciprocal space maps in successive zones, we obtain the associated real space compressive strain of 1.5+-0.5% along c-axis. An autocorrelation analysis quantifies the incommensurate ordering vector q=(2pi/a)(0,0,~0.86), favoring a SS and consistent with magneto-optic Kerr effect experiments. The results reveal the importance of in-plane and out-of-plane FS mapping for ultrathin films.Comment: 4 pages, 3 figure

    Collective synchronization in spatially extended systems of coupled oscillators with random frequencies

    Full text link
    We study collective behavior of locally coupled limit-cycle oscillators with random intrinsic frequencies, spatially extended over dd-dimensional hypercubic lattices. Phase synchronization as well as frequency entrainment are explored analytically in the linear (strong-coupling) regime and numerically in the nonlinear (weak-coupling) regime. Our analysis shows that the oscillator phases are always desynchronized up to d=4d=4, which implies the lower critical dimension dlP=4d_{l}^{P}=4 for phase synchronization. On the other hand, the oscillators behave collectively in frequency (phase velocity) even in three dimensions (d=3d=3), indicating that the lower critical dimension for frequency entrainment is dlF=2d_{l}^{F}=2. Nonlinear effects due to periodic nature of limit-cycle oscillators are found to become significant in the weak-coupling regime: So-called {\em runaway oscillators} destroy the synchronized (ordered) phase and there emerges a fully random (disordered) phase. Critical behavior near the synchronization transition into the fully random phase is unveiled via numerical investigation. Collective behavior of globally-coupled oscillators is also examined and compared with that of locally coupled oscillators.Comment: 18 pages, 18 figure

    Low temperature dynamics of kinks on Ising interfaces

    Full text link
    The anisotropic motion of an interface driven by its intrinsic curvature or by an external field is investigated in the context of the kinetic Ising model in both two and three dimensions. We derive in two dimensions (2d) a continuum evolution equation for the density of kinks by a time-dependent and nonlocal mapping to the asymmetric exclusion process. Whereas kinks execute random walks biased by the external field and pile up vertically on the physical 2d lattice, then execute hard-core biased random walks on a transformed 1d lattice. Their density obeys a nonlinear diffusion equation which can be transformed into the standard expression for the interface velocity v = M[(gamma + gamma'')kappa + H]$, where M, gamma + gamma'', and kappa are the interface mobility, stiffness, and curvature, respectively. In 3d, we obtain the velocity of a curved interface near the orientation from an analysis of the self-similar evolution of 2d shrinking terraces. We show that this velocity is consistent with the one predicted from the 3d tensorial generalization of the law for anisotropic curvature-driven motion. In this generalization, both the interface stiffness tensor and the curvature tensor are singular at the orientation. However, their product, which determines the interface velocity, is smooth. In addition, we illustrate how this kink-based kinetic description provides a useful framework for studying more complex situations by modeling the effect of immobile dilute impurities.Comment: 11 pages, 10 figure

    Correlation functions and queuing phenomena in growth processes with drift

    Full text link
    We suggest a novel stochastic discrete growth model which describes the drifted Edward-Wilkinson (EW) equation h/t=νx2hvxh+η(x,t)\partial h /\partial t = \nu \partial_x^2 h - v\partial_x h +\eta(x,t). From the stochastic model, the anomalous behavior of the drifted EW equation with a defect is analyzed. To physically understand the anomalous behavior the height-height correlation functions C(r)=C(r)= and G(r)=G(r)= are also investigated, where the defect is located at x0x_0. The height-height correlation functions follow the power law C(r)rαC(r)\sim r^{\alpha'} and G(r)rαG(r)\sim r^{\alpha''} with α=α=1/4\alpha'=\alpha''=1/4 around a perfect defect at which no growth process is allowed. α=α=1/4\alpha'=\alpha''=1/4 is the same as the anomalous roughness exponent α=1/4\alpha=1/4. For the weak defect at which the growth process is partially allowed, the normal EW behavior is recovered. We also suggest a new type queuing process based on the asymmetry C(r)C(r)C(r) \neq C(-r) of the correlation function around the perfect defect

    Spin transport theory in ferromagnet/semiconductor systems with non-collinear magnetization configurations

    Full text link
    We present a comprehensive theory of spin transport in a non-degenerate semiconductor that is in contact with multiple ferromagnetic terminals. The spin dynamics in the semiconductor is studied during a perturbation of a general, non-collinear magnetization configuration and a method is shown to identify the various configurations from current signals. The conventional Landauer-B\"{u}ttiker description for spin transport across Schottky contacts is generalized by the use of a non-linearized I-V relation, and it is extended by taking into account non-coherent transport mechanisms. The theory is used to analyze a three terminal lateral structure where a significant difference in the spin accumulation profile is found when comparing the results of this model with the conventional model.Comment: 17 pages, 10 figure

    Screening and inplane magnetoresistance of anisotropic two-dimensional gas

    Full text link
    In order to split the influence of the orbital and spin effects on the inplane magnetoresistance of a quasi two-dimensional gas we derive its linear response function and dielectric function for the case of anisotropic effective mass. This result is used for the calculation of elastic transport relaxation time of a quasi two dimensional system in a parallel magnetic field. The relaxation time is proved to be isotropic in the low density limit for the case of charged impurity scattering, allowing to separate the two contributions.Comment: as published. 4 pages, 1 figur

    Electric Conductivity of the Zero-gap Semiconducting State in Alpha-(BEDT-TTF)2I3 Salt

    Full text link
    The electric conductivity which reveals the zero gap semiconducting (ZGS) state has been investigated as the function of temperature TT and life time τ\tau in order to understand the ZGS state in quarter-filled α\alpha-(BEDT-TTF)2_2I3_3 salt with four sites in the unit cell. By treating τ\tau as a parameter and making use of the one-loop approximation, it is found that the conductivity is proportional to TT and τ\tau for kB/τk_B\gg\hbar/\tau and independent of TT and τ\tau for kBT/τk_B T\ll\hbar/\tau. Further the conductivity being independent of TT in the ZGS state is examined in terms of Born approximation for the impurity cattering.Comment: 5 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Co-Seismic Displacements of the 1994 Northridge, California, Earthquake

    Get PDF
    The 17 January 1994 Northridge, California, earthquake significantly deformed the Earth's crust in the epicentral region. Displacements of 66 survey stations determined from Global Positioning System (GPS) observations collected before and after the earthquake show that individual stations were uplifted by up to 417 ± 5 mm and displaced horizontally by up to 216 ± 3 mm. Using these displacements, we estimate parameters of a uniform-slip model. Fault geometry and slip are estimated independent of seismological information, using Monte Carlo optimization techniques that minimize the model residuals. The plane that best fits the geodetic data lies 1 to 2 km above the plane indicated by aftershock seismicity. Modeling for distributed slip on a coplanar, yet larger model fault indicates that a high-slip patch occurred up-dip and northwest of the mainshock hypocenter and that less than 1 m of slip occurred in the uppermost 5 km of the crust. This finding is consistent with the lack of clear surface rupture and with the notion that the intersection with the fault that ruptured in 1971 formed the up-dip terminus of slip in the Northridge earthquake. Displacements predicted by either of these simple models explain most of the variance in the data within 50 km of the epicenter. On average, however, the scatter of the residuals is twice the data uncertainties, and in some areas, there is significant systematic misfit to either model. The co-seismic contributions of aftershocks are insufficient to explain this mismatch, indicating that the source geometry is more complicated than a single rectangular plane

    Formation of atomic tritium clusters and condensates

    Get PDF
    We present an extensive study of the static and dynamic properties of systems of spin-polarized tritium atoms. In particular, we calculate the two-body |F,m_F>=|0,0> s-wave scattering length and show that it can be manipulated via a Feshbach resonance at a field strength of about 870G. Such a resonance might be exploited to make and control a Bose-Einstein condensate of tritium in the |0,0> state. It is further shown that the quartet tritium trimer is the only bound hydrogen isotope and that its single vibrational bound state is a Borromean state. The ground state properties of larger spin-polarized tritium clusters are also presented and compared with those of helium clusters.Comment: 5 pages, 3 figure
    corecore