2,477 research outputs found

    Materials processing in space: Early experiments

    Get PDF
    The characteristics of the space environment were reviewed. Potential applications of space processing are discussed and include metallurgical processing, and processing of semiconductor materials. The behavior of fluid in low gravity is described. The evolution of apparatus for materials processing in space was reviewed

    Design of linear and nonlinear control systems via state variable feedback, with applications in nuclear reactor control

    Get PDF
    Linear and nonlinear control systems via state variable feedback with applications in nuclear reactor contro

    Eulerian spectral closures for isotropic turbulence using a time-ordered fluctuation-dissipation relation

    Full text link
    Procedures for time-ordering the covariance function, as given in a previous paper (K. Kiyani and W.D. McComb Phys. Rev. E 70, 066303 (2004)), are extended and used to show that the response function associated at second order with the Kraichnan-Wyld perturbation series can be determined by a local (in wavenumber) energy balance. These time-ordering procedures also allow the two-time formulation to be reduced to time-independent form by means of exponential approximations and it is verified that the response equation does not have an infra-red divergence at infinite Reynolds number. Lastly, single-time Markovianised closure equations (stated in the previous paper above) are derived and shown to be compatible with the Kolmogorov distribution without the need to introduce an ad hoc constant.Comment: 12 page

    Ferromagnetism in the Infinite-U Hubbard Model

    Full text link
    We have studied the stability of the ferromagnetic state in the infinite-U Hubbard model on a square lattice by approximate diagonalization of finite lattices using the density matrix renormalization group technique. By studying lattices with up to 5X20 sites, we have found the ferromagnetic state to be stable below the hole density of 22 percent. Beyond 22 percent of hole doping, the total spin of the ground state decreased gradually to zero with increasing hole density.Comment: 13 pages, RevteX 3.0, seven figures appended in uuencoded form, correcting problems with uuencoded figure

    On the Geometry of Surface Stress

    Full text link
    We present a fully general derivation of the Laplace--Young formula and discuss the interplay between the intrinsic surface geometry and the extrinsic one ensuing from the immersion of the surface in the ordinary euclidean three-dimensional space. We prove that the (reversible) work done in a general surface deformation can be expressed in terms of the surface stress tensor and the variation of the intrinsic surface metric

    Anisotropic diffusion in continuum relaxation of stepped crystal surfaces

    Full text link
    We study the continuum limit in 2+1 dimensions of nanoscale anisotropic diffusion processes on crystal surfaces relaxing to become flat below roughening. Our main result is a continuum law for the surface flux in terms of a new continuum-scale tensor mobility. The starting point is the Burton, Cabrera and Frank (BCF) theory, which offers a discrete scheme for atomic steps whose motion drives surface evolution. Our derivation is based on the separation of local space variables into fast and slow. The model includes: (i) anisotropic diffusion of adsorbed atoms (adatoms) on terraces separating steps; (ii) diffusion of atoms along step edges; and (iii) attachment-detachment of atoms at step edges. We derive a parabolic fourth-order, fully nonlinear partial differential equation (PDE) for the continuum surface height profile. An ingredient of this PDE is the surface mobility for the adatom flux, which is a nontrivial extension of the tensor mobility for isotropic terrace diffusion derived previously by Margetis and Kohn. Approximate, separable solutions of the PDE are discussed.Comment: 14 pages, 1 figur

    Empiric Models of the Earth's Free Core Nutation

    Full text link
    Free core nutation (FCN) is the main factor that limits the accuracy of the modeling of the motion of Earth's rotational axis in the celestial coordinate system. Several FCN models have been proposed. A comparative analysis is made of the known models including the model proposed by the author. The use of the FCN model is shown to substantially increase the accuracy of the modeling of Earth's rotation. Furthermore, the FCN component extracted from the observed motion of Earth's rotational axis is an important source for the study of the shape and rotation of the Earth's core. A comparison of different FCN models has shown that the proposed model is better than other models if used to extract the geophysical signal (the amplitude and phase of FCN) from observational data.Comment: 8 pages, 3 figures; minor update of the journal published versio

    Wetting layer thickness and early evolution of epitaxially strained thin films

    Full text link
    We propose a physical model which explains the existence of finite thickness wetting layers in epitaxially strained films. The finite wetting layer is shown to be stable due to the variation of the non-linear elastic free energy with film thickness. We show that anisotropic surface tension gives rise to a metastable enlarged wetting layer. The perturbation amplitude needed to destabilize this wetting layer decreases with increasing lattice mismatch. We observe the development of faceted islands in unstable films.Comment: 4 pages, 3 eps figure

    Spin transport theory in ferromagnet/semiconductor systems with non-collinear magnetization configurations

    Full text link
    We present a comprehensive theory of spin transport in a non-degenerate semiconductor that is in contact with multiple ferromagnetic terminals. The spin dynamics in the semiconductor is studied during a perturbation of a general, non-collinear magnetization configuration and a method is shown to identify the various configurations from current signals. The conventional Landauer-B\"{u}ttiker description for spin transport across Schottky contacts is generalized by the use of a non-linearized I-V relation, and it is extended by taking into account non-coherent transport mechanisms. The theory is used to analyze a three terminal lateral structure where a significant difference in the spin accumulation profile is found when comparing the results of this model with the conventional model.Comment: 17 pages, 10 figure

    Self Consistent Expansion for the Molecular Beam Epitaxy Equation

    Full text link
    Motivated by a controversy over the correct results derived from the dynamic renormalization group (DRG) analysis of the non linear molecular beam epitaxy (MBE) equation, a self-consistent expansion (SCE) for the non linear MBE theory is considered. The scaling exponents are obtained for spatially correlated noise of the general form D(rr,tt)=2D0rr2ρdδ(tt)D({\vec r - \vec r',t - t'}) = 2D_0 | {\vec r - \vec r'} |^{2\rho - d} \delta ({t - t'}). I find a lower critical dimension dc(ρ)=4+2ρd_c (\rho) = 4 + 2\rho , above, which the linear MBE solution appears. Below the lower critical dimension a r-dependent strong-coupling solution is found. These results help to resolve the controversy over the correct exponents that describe non linear MBE, using a reliable method that proved itself in the past by predicting reasonable results for the Kardar-Parisi-Zhang (KPZ) system, where DRG failed to do so.Comment: 16 page
    corecore