209 research outputs found

    Evaluation of Short-Period, Near-Regional M_s Scales for the Nevada Test Site

    Get PDF
    Surface wave magnitude (M_s) estimation for small events recorded at near-regional distances will often require a magnitude scale designed for Rayleigh waves with periods less than 10 sec. We have examined the performance of applying two previously published M_s scales on 7-sec Rayleigh waves recorded at distances less than 500 km. First, we modified the Marshall and Basham (1972) M_s scale, originally defined for periods greater than 10 sec, to estimate surface wave magnitudes for short-period Rayleigh waves from earthquakes and explosions on or near the Nevada Test Site. We refer to this modification as ^(M+B) M_s(7), and we have used short-period, high-quality dispersion curves to determine empirical path corrections for the 7-sec Rayleigh waves. We have also examined the performance of the Rezapour and Pearce (1998) formula, developed using theoretical distance corrections and surface wave observations with periods greater than 10 sec, for 7-sec Rayleigh waves ^(R+P) (M_S(7)) as recorded from the same dataset. The results demonstrate that both formulas can be used to estimate M_s for nuclear explosions and earthquakes over a wider magnitude distribution than is possible using conventional techniques developed for 20-sec Rayleigh waves. These M_s(7) values scale consistently with other Ms studies at regional and teleseismic distances with the variance described by a constant offset; however, the offset for the ^(M+B) M_s(7) estimates is over one magnitude unit nearer the teleseismic values than the ^(R+P) M_s(7) estimates. Using our technique, it is possible to employ a near-regional single-station or sparse network to estimate surface wave magnitudes, thus allowing quantification of the size of both small earthquakes and explosions. Finally, we used a jackknife technique to determine the false-alarm rates for the ^(M+B) M_s(7)-m_b discriminant for this region and found that the probability of misclassifying an earthquake as an explosion is 10%, while the probability of classifying an explosion as an earthquake was determined to be 1.2%. The misclassification probabilities are slightly higher for the ^(R+P) M_s(7) estimates. Our future research will be aimed at examining the transportability of these methods

    Millimeter-wave Signature of Strange Matter Stars

    Get PDF
    One of the most important questions in the study of compact objects is the nature of pulsars, including whether they consist of neutron matter or strange quark matter (SQM). However, few mechanisms for distinguishing between these two possibilities have been proposed. The purpose of this paper is to show that a strange star (one made of SQM) will have a vibratory mode with an oscillation frequency of approximately 250 GHz (millimeter wave). This mode corresponds to motion of the center of the expected crust of normal matter relative to the center of the strange quark core, without distortion of either. Radiation from currents generated in the crust at the mode frequency would be a SQM signature. We also consider effects of stellar rotation, estimate power emission and signal-to-noise ratio, and discuss briefly possible mechanisms for exciting the mode.Comment: 13 pages, Latex, one figur

    Seismic Search for Strange Quark Nuggets

    Full text link
    Bounds on masses and abundances of Strange Quark Nuggets (SQNs) are inferred from a seismic search on Earth. Potential SQN bounds from a possible seismic search on the Moon are reviewed and compared with Earth capabilities. Bounds are derived from the data taken by seismometers implanted on the Moon by the Apollo astronauts. We show that the Apollo data implies that the abundance of SQNs in the region of 10 kg to one ton must be at least an order of magnitude less than would saturate the dark matter in the solar neighborhood.Comment: 7 pages and 4 tables, plus 3 attached figures. Revised version responds to helpful comments of Phys. Rev. referee by adding 3 figures, subtracting two tables and taking into account information from QC

    A simple radionuclide-driven single-ion source

    Get PDF
    We describe a source capable of producing single barium ions through nuclear recoils in radioactive decay. The source is fabricated by electroplating 148Gd onto a silicon {\alpha}-particle detector and vapor depositing a layer of BaF2 over it. 144Sm recoils from the alpha decay of 148Gd are used to dislodge Ba+ ions from the BaF2 layer and emit them in the surrounding environment. The simultaneous detection of an {\alpha} particle in the substrate detector allows for tagging of the nuclear decay and of the Ba+ emission. The source is simple, durable, and can be manipulated and used in different environments. We discuss the fabrication process, which can be easily adapted to emit most other chemical species, and the performance of the source

    Olivine in Almahata Sitta - Curiouser and Curiouser

    Get PDF
    Almahata Sitta (hereafter Alma) is an anomalous, polymict ureilite. Anomalous features include low abundance of olivine, large compositional range of silicates, high abundance and large size of pores, crystalline pore wall linings, and overall finegrained texture. Tomography suggests the presence of foliation, which is known from other ureilites. Alma pyroxenes and their interpretation are discussed in two companion abstracts. In this abstract we discuss the composition of olivine in Alma, which is indicative of the complexity of this meteorite

    Investigation of radioactivity-induced backgrounds in EXO-200

    Full text link
    The search for neutrinoless double-beta decay (0{\nu}{\beta}{\beta}) requires extremely low background and a good understanding of their sources and their influence on the rate in the region of parameter space relevant to the 0{\nu}{\beta}{\beta} signal. We report on studies of various {\beta}- and {\gamma}-backgrounds in the liquid- xenon-based EXO-200 0{\nu}{\beta}{\beta} experiment. With this work we try to better understand the location and strength of specific background sources and compare the conclusions to radioassay results taken before and during detector construction. Finally, we discuss the implications of these studies for EXO-200 as well as for the next-generation, tonne-scale nEXO detector.Comment: 9 pages, 7 figures, 3 table

    Search for Neutrinoless Double-Beta Decay in 136^{136}Xe with EXO-200

    Get PDF
    We report on a search for neutrinoless double-beta decay of 136^{136}Xe with EXO-200. No signal is observed for an exposure of 32.5 kg-yr, with a background of ~1.5 x 10^{-3} /(kg yr keV) in the ±1σ\pm 1\sigma region of interest. This sets a lower limit on the half-life of the neutrinoless double-beta decay T1/20νββT_{1/2}^{0\nu\beta\beta}(136^{136}Xe) > 1.6 x 1025^{25} yr (90% CL), corresponding to effective Majorana masses of less than 140-380 meV, depending on the matrix element calculation
    • …
    corecore