3 research outputs found

    Investigating the Correlation between GNSS Signal Scintillation and Thunderstorms

    Get PDF
    Global Navigation Satellite Systems (GNSS) have wide application in multiple sectors from daily life to industrial use. These sectors include navigation, timing, and positioning which all require a constant stream of accurate data. One aspect of maintaining the accuracy involves a deep understanding of the ionosphere and how it affects radio signals. This project takes into account an element that might impact the ionosphere: thunderstorms and their high-altitude lightning. Structures created in the ionosphere can cause scintillations, but finding if thunderstorms could initiate these structures is the main goal. Scintillation refers to fluctuations in the phase and amplitude of GNSS signals. There are some forms of lightning, such as blue jets and sprites, that have the ability to reach the ionosphere. This high-altitude lighting is thought to mostly occur in the tropics because of favorable conditions, but it has been observed in other latitudes. Lightning is shown to reach and affect the upper atmosphere, but the effect this could have on satellite signals is still under review. To record relevant scintillations, GNSS receivers have been situated in Daytona Beach, FL and the weather has been monitored for thunderstorms around the area. Receiver data is then graphed and analyzed for significant scintillations during the times of thunderstorms. Lightning location and time is also overlaid on a map with the satellite location plotted to further prove possible correlation between GNSS scintillations and lighting strikes. An evident correlation between scintillation signals and lightning strikes has been observed, but more evidence is needed to confirm this lightning could be the cause of the scintillation

    Total Electron Content and Ionospheric Scintillation Measurements during the Total Solar Eclipse of July 2, 2019

    Get PDF
    Global Navigation Satellite Systems (GNSS) provide a reliable source of radio wave signals that is available at all times throughout the entire planet. These signals are known to also interact with the ionosphere, where there is a high concentration of free electrons and ions. This in turn creates a framework for scientists to continuously monitor and analyze how these signals are affected by free electron and ion concentration irregularities in this region. Such irregularities may induce fluctuations in both signal amplitude and phase known as ionospheric scintillations. The behavior of the ionosphere is also known to be directly related with solar activity as well as localized phenomena, such as solar eclipses. This study aims to measure the impact of the solar eclipse of July 2, 2019 on local ionospheric properties in terms of total electron content (TEC) and scintillation indices S4 and SigmaPhi. Two GNSS receivers (NovAtel GPStation-6) were stationed in La Serena, Chile in collaboration with the University of La Serena and in Cerro Pachón, Chile along the Andes Lidar Observatory, where they collected TEC and scintillation data prior, during and after totality. We have observed a pronounced drop and recovery of TEC on both stations as well as supporting high rate data to explore possibilities of eclipse induced scintillations

    Investigation into Geomagnetic storms and ionospheric scintillation

    Get PDF
    Understanding how space weather phenomenon affects daily life has been a main focus of space weather studies. In particular, identifying the relationship between solar activities, ionospheric irregularities and consequently ionospheric scintillation has inspired numerous research efforts. Geomagnetic storms fueled by solar activities cause ionospheric irregularities. Ionospheric scintillation occurs when radio signals travel through these irregularities and experience rapid fluctuations in radio signal phase and amplitude. Such fluctuations have great consequences in radio wave based technology such as the Global Position system(GPS) as it causes a loss of lock. Therefore, through the implantation of two GPS Receivers, continuous data was obtained on phase and amplitude of radio signals from the Global Navigation Satellite Systems(GNSS). This data was then thoroughly analyzed to identify scintillation signatures. On January 31st, 2019, scintillation signatures that correlated to a G1 minor geomagnetic storm were observed. In this paper, the method of analysis is adapted from the aforementioned case study to identify past geomagnetic events that possibly correlated with observed scintillation. Through this study, it is hoped that a correlation between geomagnetic storms and ionospheric scintillation in the mid-latitude region will be highlighted
    corecore