3,701 research outputs found

    Optimization of the direct synthesis of dimethyl ether from CO₂ rich synthesis gas: Closing the loop between experimental investigations and model-based reactor design

    Get PDF
    Reaction kinetic modeling, model-based optimization and experimental validation are performed for the direct synthesis of dimethyl ether from CO2 rich synthesis gas. Among these disciplines, experimental methods and models are aligned in a stringent way of action, i.e., the same setup and models are applied throughout the whole contribution. First, a lumped reaction kinetic model from the literature is modified and parametrized to fit a vast array of 240 data points measured in a laboratory fixed bed reactor. The data were acquired using a mechanical mixture of the commercial catalysts CuO/ZnO/Al2O3 and γ-Al2O3. For this setup, a predictive model is derived and applied within dynamic model-based optimization. Here, the single-pass COx conversion serves as objective function while the operating conditions and composition of the mixed catalyst bed are the optimization variables. Finally, the optimization results obtained numerically are validated experimentally verifying the identified performance enhancement qualitatively. The remaining quantitative deviations yield valuable insights into model and methodological weaknesses or inaccuracies, closing the loop between kinetic investigations, model-based optimization and experimental validation

    An improved method for statistical studies of the internal kinematics of HII regions: the case of M 83

    Full text link
    We present the integrated Halpha emission line profile for 157 HII regions in the central 3.4' x 3.4' of the galaxy M 83 (NGC 5236). Using the Fabry-Perot interferometer GHaFaS, on the 4.2 m William Herschel on La Palma, we show the importance of a good characterization of the instrumental response function for the study of line profile shapes. The luminosity-velocity dispersion relation is also studied, and in the log(L)-log(sigma) plane we do not find a linear relation, but an upper envelope with equation log(L)=0.9 *log(sigma)+38.1. For the adopted distance of 4.5 Mpc, the upper envelope appears at the luminosity L=10^38.5 ergs, in full agreement with previous studies of other galaxies, reinforcing the idea of using HII regions as standard candles.Comment: 13 pages, 9 figures, accepted for publication in MNRA

    Magnetic operations: a little fuzzy physics?

    Full text link
    We examine the behaviour of charged particles in homogeneous, constant and/or oscillating magnetic fields in the non-relativistic approximation. A special role of the geometric center of the particle trajectory is elucidated. In quantum case it becomes a 'fuzzy point' with non-commuting coordinates, an element of non-commutative geometry which enters into the traditional control problems. We show that its application extends beyond the usually considered time independent magnetic fields of the quantum Hall effect. Some simple cases of magnetic control by oscillating fields lead to the stability maps differing from the traditional Strutt diagram.Comment: 28 pages, 8 figure

    Detection of bridge emission above 50 GeV from the Crab pulsar with the MAGIC telescopes

    Full text link
    The Crab pulsar is the only astronomical pulsed source detected at very high energy (VHE, E>100GeV) gamma-rays. The emission mechanism of VHE pulsation is not yet fully understood, although several theoretical models have been proposed. In order to test the new models, we measured the light curve and the spectra of the Crab pulsar with high precision by means of deep observations. We analyzed 135 hours of selected MAGIC data taken between 2009 and 2013 in stereoscopic mode. In order to discuss the spectral shape in connection with lower energies, 4.6 years of {\it Fermi}-LAT data were also analyzed. The known two pulses per period were detected with a significance of 8.0σ8.0 \sigma and 12.6σ12.6 \sigma. In addition, significant emission was found between the two pulses with 6.2σ6.2 \sigma. We discovered the bridge emission above 50 GeV between the two main pulses. This emission can not be explained with the existing theories. These data can be used for testing new theoretical models.Comment: 5 pages, 4 figure

    MAGIC detection of short-term variability of the high-peaked BL Lac object 1ES 0806+524

    Get PDF
    The high-frequency-peaked BL Lac (HBL) 1ES 0806+524 (z = 0.138) was discovered in VHE γ\gamma rays in 2008. Until now, the broad-band spectrum of 1ES 0806+524 has been only poorly characterized, in particular at high energies. We analysed multiwavelength observations from γ\gamma rays to radio performed from 2011 January to March, which were triggered by the high activity detected at optical frequencies. These observations constitute the most precise determination of the broad-band emission of 1ES 0806+524 to date. The stereoscopic MAGIC observations yielded a γ\gamma-ray signal above 250 GeV of (3.7±0.7)(3.7 \pm 0.7) per cent of the Crab Nebula flux with a statistical significance of 9.9 σ\sigma. The multiwavelength observations showed significant variability in essentially all energy bands, including a VHE γ\gamma-ray flare that lasted less than one night, which provided unprecedented evidence for short-term variability in 1ES 0806+524. The spectrum of this flare is well described by a power law with a photon index of 2.97±0.292.97 \pm 0.29 between \sim150 GeV and 1 TeV and an integral flux of (9.3±1.9)(9.3 \pm 1.9) per cent of the Crab Nebula flux above 250 GeV. The spectrum during the non-flaring VHE activity is compatible with the only available VHE observation performed in 2008 with VERITAS when the source was in a low optical state. The broad-band spectral energy distribution can be described with a one-zone Synchrotron Self Compton model with parameters typical for HBLs, indicating that 1ES 0806+524 is not substantially different from the HBLs previously detected.Comment: 12 pages, 8 figures, 3 tables, accepted 2015 April 20 for publication in Monthly Notices of the Royal Astronomical Society Main Journa

    Measurement of the Crab Nebula spectrum over three decades in energy with the MAGIC telescopes

    Get PDF
    The MAGIC stereoscopic system collected 69 hours of Crab Nebula data between October 2009 and April 2011. Analysis of this data sample using the latest improvements in the MAGIC stereoscopic software provided an unprecedented precision of spectral and night-by-night light curve determination at gamma rays. We derived a differential spectrum with a single instrument from 50 GeV up to almost 30 TeV with 5 bins per energy decade. At low energies, MAGIC results, combined with Fermi-LAT data, show a flat and broad Inverse Compton peak. The overall fit to the data between 1 GeV and 30 TeV is not well described by a log-parabola function. We find that a modified log-parabola function with an exponent of 2.5 instead of 2 provides a good description of the data (χ2=35/26\chi^2=35/26). Using systematic uncertainties of red the MAGIC and Fermi-LAT measurements we determine the position of the Inverse Compton peak to be at (53 ±\pm 3stat + 31syst -13syst) GeV, which is the most precise estimation up to date and is dominated by the systematic effects. There is no hint of the integral flux variability on daily scales at energies above 300 GeV when systematic uncertainties are included in the flux measurement. We consider three state- of-the-art theoretical models to describe the overall spectral energy distribution of the Crab Nebula. The constant B-field model cannot satisfactorily reproduce the VHE spectral measurements presented in this work, having particular difficulty reproducing the broadness of the observed IC peak. Most probably this implies that the assumption of the homogeneity of the magnetic field inside the nebula is incorrect. On the other hand, the time-dependent 1D spectral model provides a good fit of the new VHE results when considering a 80 {\mu}G magnetic field. However, it fails to match the data when including the morphology of the nebula at lower wavelengths.Comment: accepted by JHEAp, 9 pages, 6 figure

    MAGIC observations of MWC 656, the only known Be/BH system

    Get PDF
    Context: MWC 656 has recently been established as the first observationally detected high-mass X-ray binary system containing a Be star and a black hole (BH). The system has been associated with a gamma-ray flaring event detected by the AGILE satellite in July 2010. Aims: Our aim is to evaluate if the MWC 656 gamma-ray emission extends to very high energy (VHE > 100 GeV) gamma rays. Methods. We have observed MWC 656 with the MAGIC telescopes for \sim23 hours during two observation periods: between May and June 2012 and June 2013. During the last period, observations were performed contemporaneously with X-ray (XMM-Newton) and optical (STELLA) instruments. Results: We have not detected the MWC 656 binary system at TeV energies with the MAGIC Telescopes in either of the two campaigns carried out. Upper limits (ULs) to the integral flux above 300 GeV have been set, as well as differential ULs at a level of \sim5% of the Crab Nebula flux. The results obtained from the MAGIC observations do not support persistent emission of very high energy gamma rays from this system at a level of 2.4% the Crab flux.Comment: Accepted for publication in A&A. 5 pages, 2 figures, 2 table
    corecore