18,325 research outputs found

    On the compressibility equation of state for multicomponent adhesive hard sphere fluids

    Full text link
    The compressibility equation of state for a multicomponent fluid of particles interacting via an infinitely narrow and deep potential, is considered within the mean spherical approximation (MSA). It is shown that for a class of models leading to a particular form of the Baxter functions qij(r)q_{ij}(r) containing density-independent stickiness coefficient, the compressibility EOS does not exist, unlike the one-component case. The reason for this is that a direct integration of the compressibility at fixed composition, cannot be carried out due to the lack of a reciprocity relation on the second order partial derivatives of the pressure with respect to two different densities. This is, in turn, related to the inadequacy of the MSA. A way out to this drawback is presented in a particular example, leading to a consistent compressibility pressure, and a possible generalization of this result is discussed.Comment: 13 pages, no figures, accepted for publication Molec. Physics (2002

    On the dual interpretation of zero-curvature Friedmann-Robertson-Walker models

    Get PDF
    Two possible interpretations of FRW cosmologies (perfect fluid or dissipative fluid)are considered as consecutive phases of the system. Necessary conditions are found, for the transition from perfect fluid to dissipative regime to occur, bringing out the conspicuous role played by a particular state of the system (the ''critical point '').Comment: 13 pages Latex, to appear in Class.Quantum Gra

    Dissipative fluids out of hydrostatic equilibrium

    Get PDF
    In the context of the M\"{u}ller-Israel-Stewart second order phenomenological theory for dissipative fluids, we analyze the effects of thermal conduction and viscosity in a relativistic fluid, just after its departure from hydrostatic equilibrium, on a time scale of the order of relaxation times. Stability and causality conditions are contrasted with conditions for which the ''effective inertial mass'' vanishes.Comment: 21 pages, 1 postscript figure (LaTex 2.09 and epsfig.sty required) Submitted to Classical and Quantum Gravit

    Experimental demonstration of a graph state quantum error-correction code

    Full text link
    Scalable quantum computing and communication requires the protection of quantum information from the detrimental effects of decoherence and noise. Previous work tackling this problem has relied on the original circuit model for quantum computing. However, recently a family of entangled resources known as graph states has emerged as a versatile alternative for protecting quantum information. Depending on the graph's structure, errors can be detected and corrected in an efficient way using measurement-based techniques. In this article we report an experimental demonstration of error correction using a graph state code. We have used an all-optical setup to encode quantum information into photons representing a four-qubit graph state. We are able to reliably detect errors and correct against qubit loss. The graph we have realized is setup independent, thus it could be employed in other physical settings. Our results show that graph state codes are a promising approach for achieving scalable quantum information processing

    Electrostatic internal energy using the method of images

    Full text link
    For several configurations of charges in the presence of conductors, the method of images permits us to obtain some observables associated with such a configuration by replacing the conductors with some image charges. However, simple inspection shows that the potential energy associated with both systems does not coincide. Nevertheless, it can be shown that for a system of a grounded or neutral conductor and a distribution of charges outside, the external potential energy associated with the real charge distribution embedded in the field generated by the set of image charges is twice the value of the internal potential energy associated with the original system. This assertion is valid for any size and shape of the conductor, and regardless of the configuration of images required. In addition, even in the case in which the conductor is not grounded nor neutral, it is still possible to calculate the internal potential energy of the original configuration through the method of images. These results show that the method of images could also be useful for calculations of the internal potential energy of the original system.Comment: 5 pages, 3 figures. New discussions added. Minor change

    Isocausal spacetimes may have different causal boundaries

    Full text link
    We construct an example which shows that two isocausal spacetimes, in the sense introduced by Garc\'ia-Parrado and Senovilla, may have c-boundaries which are not equal (more precisely, not equivalent, as no bijection between the completions can preserve all the binary relations induced by causality). This example also suggests that isocausality can be useful for the understanding and computation of the c-boundary.Comment: Minor modifications, including the title, which matches now with the published version. 12 pages, 3 figure

    Moments of inertia for solids of revolution and variational methods

    Full text link
    We present some formulae for the moments of inertia of homogeneous solids of revolution in terms of the functions that generate the solids. The development of these expressions exploits the cylindrical symmetry of these objects, and avoids the explicit use of multiple integration, providing an easy and pedagogical approach. The explicit use of the functions that generate the solid gives the possibility of writing the moment of inertia as a functional, which in turn allows us to utilize the calculus of variations to obtain a new insight into some properties of this fundamental quantity. In particular, minimization of moments of inertia under certain restrictions is possible by using variational methods.Comment: 6 pages, 6 figures, LaTeX2e. Two paragraphs added. Minor typos corrected. Version to appear in European Journal of Physic

    Thermal Conduction in Systems out of Hydrostatic Equilibrium

    Get PDF
    We analyse the effects of thermal conduction in a relativistic fluid, just after its departure from hydrostatic equilibrium, on a time scale of the order of thermal relaxation time. It is obtained that the resulting evolution will critically depend on a parameter defined in terms of thermodynamic variables, which is constrained by causality requirements.Comment: 16 pages, emTex (LaTex 2.09). To appear in Classical and Quantum Gravit
    • …
    corecore