15,403 research outputs found

    Charging Interacting Rotating Black Holes in Heterotic String Theory

    Full text link
    We present a formulation of the stationary bosonic string sector of the whole toroidally compactified effective field theory of the heterotic string as a double Ernst system which, in the framework of General Relativity describes, in particular, a pair of interacting spinning black holes; however, in the framework of low--energy string theory the double Ernst system can be particularly interpreted as the rotating field configuration of two interacting sources of black hole type coupled to dilaton and Kalb--Ramond fields. We clarify the rotating character of the BtϕB_{t\phi}--component of the antisymmetric tensor field of Kalb--Ramond and discuss on its possible torsion nature. We also recall the fact that the double Ernst system possesses a discrete symmetry which is used to relate physically different string vacua. Therefore we apply the normalized Harrison transformation (a charging symmetry which acts on the target space of the low--energy heterotic string theory preserving the asymptotics of the transformed fields and endowing them with multiple electromagnetic charges) on a generic solution of the double Ernst system and compute the generated field configurations for the 4D effective field theory of the heterotic string. This transformation generates the U(1)nU(1)^n vector field content of the whole low--energy heterotic string spectrum and gives rise to a pair of interacting rotating black holes endowed with dilaton, Kalb--Ramond and multiple electromagnetic fields where the charge vectors are orthogonal to each other.Comment: 15 pages in latex, revised versio

    Creation of quantum error correcting codes in the ultrastrong coupling regime

    Full text link
    We propose to construct large quantum graph codes by means of superconducting circuits working at the ultrastrong coupling regime. In this physical scenario, we are able to create a cluster state between any pair of qubits within a fraction of a nanosecond. To exemplify our proposal, creation of the five-qubit and Steane codes is numerically simulated. We also provide optimal operating conditions with which the graph codes can be realized with state-of-the-art superconducting technologies.Comment: Added a new appendix sectio

    Stationary Cylindrical Anisotropic Fluid

    Get PDF
    We present the whole set of equations with regularity and matching conditions required for the description of physically meaningful stationary cylindrically symmmetric distributions of matter, smoothly matched to Lewis vacuum spacetime. A specific example is given. The electric and magnetic parts of the Weyl tensor are calculated, and it is shown that purely electric solutions are necessarily static. Then, it is shown that no conformally flat stationary cylindrical fluid exits, satisfying regularity and matching conditions.Comment: 17 pages Latex. To appear in Gen.Rel.Gra

    Phase mapping of aging process in InN nanostructures: oxygen incorporation and the role of the zincblende phase

    Full text link
    Uncapped InN nanostructures undergo a deleterious natural aging process at ambient conditions by oxygen incorporation. The phases involved in this process and their localization is mapped by Transmission Electron Microscopy (TEM) related techniques. The parent wurtzite InN (InN-w) phase disappears from the surface and gradually forms a highly textured cubic layer that completely wraps up a InN-w nucleus which still remains from original single-crystalline quantum dots. The good reticular relationships between the different crystals generate low misfit strains and explain the apparent easiness for phase transformations at room temperature and pressure conditions, but also disable the classical methods to identify phases and grains from TEM images. The application of the geometrical phase algorithm in order to form numerical moire mappings, and RGB multilayered image reconstructions allows to discern among the different phases and grains formed inside these nanostructures. Samples aged for shorter times reveal the presence of metastable InN:O zincblende (zb) volumes, which acts as the intermediate phase between the initial InN-w and the most stable cubic In2O3 end phase. These cubic phases are highly twinned with a proportion of 50:50 between both orientations. We suggest that the existence of the intermediate InN:O-zb phase should be seriously considered to understand the reason of the widely scattered reported fundamental properties of thought to be InN-w, as its bandgap or superconductivity.Comment: 18 pages 7 figure

    Stellar Populations and Star Cluster Formation in Interacting Galaxies with the Advanced Camera for Surveys

    Full text link
    Pixel-by-pixel colour-magnitude and colour-colour diagrams - based on a subset of the Hubble Space Telescope Advanced Camera for Surveys Early Release Observations - provide a powerful technique to explore and deduce the star and star cluster formation histories of the Mice and the Tadpole interacting galaxies. In each interacting system we find some 40 bright young star clusters (20 <= F606W (mag) <= 25, with a characteristic mass of ~3 x 10^6 Msun), which are spatially coincident with blue regions of active star formation in their tidal tails and spiral arms. We estimate that the main events triggering the formation of these clusters occurred ~(1.5-2.0) x 10^8 yr ago. We show that star cluster formation is a major mode of star formation in galaxy interactions, with >= 35% of the active star formation in encounters occurring in star clusters. This is the first time that young star clusters have been detected along the tidal tails in interacting galaxies. The tidal tail of the Tadpole system is dominated by blue star forming regions, which occupy some 60% of the total area covered by the tail and contribute ~70% of the total flux in the F475W filter (decreasing to ~40% in F814W). The remaining pixels in the tail have colours consistent with those of the main disk. The tidally triggered burst of star formation in the Mice is of similar strength in both interacting galaxies, but it has affected only relatively small, spatially coherent areas.Comment: 23 pages in preprint form, 6 (encapsulated) postscript figures; accepted for publication in New Astronomy; ALL figures (even the grey-scale ones) need to be printed on a colour printer style files included; for full-resolution paper, see http://www.ast.cam.ac.uk/STELLARPOPS/ACSpaper

    Local Swift-BAT active galactic nuclei prefer circumnuclear star formation

    Full text link
    We use Herschel data to analyze the size of the far-infrared 70micron emission for z<0.06 local samples of 277 hosts of Swift-BAT selected active galactic nuclei (AGN), and 515 comparison galaxies that are not detected by BAT. For modest far-infrared luminosities 8.5<log(LFIR)<10.5, we find large scatter of half light radii Re70 for both populations, but a typical Re70 <~ 1 kpc for the BAT hosts that is only half that of comparison galaxies of same far-infrared luminosity. The result mostly reflects a more compact distribution of star formation (and hence gas) in the AGN hosts, but compact AGN heated dust may contribute in some extremely AGN-dominated systems. Our findings are in support of an AGN-host coevolution where accretion onto the central black hole and star formation are fed from the same gas reservoir, with more efficient black hole feeding if that reservoir is more concentrated. The significant scatter in the far-infrared sizes emphasizes that we are mostly probing spatial scales much larger than those of actual accretion, and that rapid accretion variations can smear the distinction between the AGN and comparison categories. Large samples are hence needed to detect structural differences that favour feeding of the black hole. No size difference AGN host vs. comparison galaxies is observed at higher far-infrared luminosities log(LFIR)>10.5 (star formation rates >~ 6 Msun/yr), possibly because these are typically reached in more compact regions in the first place.Comment: 7 pages, 3 figures, accepted for publication in Astronomy & Astrophysic

    Enseñanza y evaluación de la competencia transversal de aptitud para la comunicación oral

    Get PDF
    En esta contribución se presentan distintas formas de trabajar y evaluar la competencia transversal aptitud para la comunicación oral en grupos pequeños (25-30) y grandes (>30) de estudiantes, así como los resultados obtenidos en su aplicación a distintas asignaturas. En particular, se han diseñado actividades que incluyen la realización de debates, exposiciones orales, la explicación oral por parte de los estudiantes a sus compañeros de parte del temario de la asignatura y la realización de vídeos donde los estudiantes expongan oralmente contenidos de la asignatura. Para ayudar a los estudiantes a detectar sus carencias en esta competencia, son evaluados mediante los compañeros y mediante el profesor, utilizando rúbricas diseñadas para ello. Finalmente, se discute y evalúa la adecuación y los resultados obtenidos de las distintas actividades propuestas para la calificación de la competencia de comunicación oral, así como las propuestas de mejora.Peer Reviewe

    A causal model of radiating stellar collapse

    Get PDF
    We find a simple exact model of radiating stellar collapse, with a shear-free and non-accelerating interior matched to a Vaidya exterior. The heat flux is subject to causal thermodynamics, leading to self-consistent determination of the temperature TT. We solve for TT exactly when the mean collision time τc\tau_{c} is constant, and perturbatively in a more realistic case of variable τc\tau_{c}. Causal thermodynamics predicts temperature behaviour that can differ significantly from the predictions of non-causal theory. In particular, the causal theory gives a higher central temperature and greater temperature gradient.Comment: Latex [ioplppt style] 9 pages; to appear Class. Quantum Gra

    Quantum singularity of Levi-Civita spacetimes

    Full text link
    Quantum singularities in general relativistic spacetimes are determined by the behavior of quantum test particles. A static spacetime is quantum mechanically singular if the spatial portion of the wave operator is not essentially self-adjoint. Here Weyl's limit point-limit circle criterion is used to determine whether a wave operator is essentially self-adjoint. This test is then applied to scalar wave packets in Levi-Civita spacetimes to help elucidate the physical properties of the spacetimes in terms of their metric parameters
    corecore