29 research outputs found

    Condition-dependent sex allocation by clones of a galling aphid

    Get PDF
    Local mate competition (LMC) has been postulated to be the primary factor of female-biased sex allocation. In animals such as aphids that exhibit seasonal alternations of clonal and sexual reproduction, there is a high possibility of intra-clonal mating and LMC. This possibility is more plausible for more fecund clones, but out-breeding is predicted for less fecund clones. We hypothesize that clones that are more fecund will gain higher fitness returns by reducing investment in males because of more intense LMC among clonal males. We tested this hypothesis by elucidating the clonal sex allocation patterns of the galling aphid Kaltenbachiella japonica, in which inbreeding and LMC appear to be common. Winged mothers that emerge from a gall, belonging to the same clone, produced males and sexual females asexually on a branch, without dispersing to other trees. The heavier the gall, the more winged mothers were produced from the gall. Individual mothers produced a constant number of males and a variable number of females. The clonal sex allocation to males was 39.8%, on average, and decreased with increasing gall weight. This result showed that clones that were more fecund exhibited more female-biased sex allocation and thus supported our hypothesis. Furthermore, our results corroborated Stubblefield and Seger's hypothesis for sex allocation in patch structure rather than Yamaguchi's constant male hypothesis. We conclude that K. japonica clones are able to adjust their sex allocation patterns adaptively depending on the quality of resources in the galls

    Costs and constraints in aphid-ant mutualism

    Get PDF
    While many studies have demonstrated that ants provide beneficial services to aphids, Bristow (Ant-plant interactions, Oxford University Press, Oxford, 104-119, 1991) first questioned why so few aphid species are ant-attended. Phylogenetic trees have demonstrated multiple gains and loss of ant-attendance in the course of aphid-ant interactions, implying that mutualisms easily form and dissolve. Several studies have reported the factors that influence the formation and maintenance of aphid-ant interactions. Examples include the physiological costs of ant attendance, competition for mutualistic ants, ant predation on aphids, the influence of host plants, and parasitoid wasps. Recent physiological techniques have also revealed the chemical component of aphid-ant mutualisms. The honeydew of ant-attended aphids contains melezitose (a trisaccharide), which has an important role in aphid-ant interactions. Studies of cuticular hydrocarbons on aphids and ants have clarified the underlying mechanisms of ant predation on aphids. Attending ants also reduce aphid dispersal ability, causing the formation of fragmented aphid populations with low genetic diversity in each population. The reduced aphid dispersal could be partly explained by higher wing loading and reduction of flight apparatus due to ant attendance. Whether ant attendance is associated with the range of host plants of aphids or genetic variation in microorganism in aphids remain to be explored
    corecore