25 research outputs found

    Astrophysical Modeling of Time-Domain Surveys

    Get PDF
    The goal of this work is to develop and apply algorithmic approaches for astrophysical modeling of time- domain surveys. Such approaches are necessary to exploit ongoing and future all-sky time-domain surveys. I focus on quantifying and characterizing source variability based on sparsely and irregularly sampled, non-simultaneous multi-band light curves, with an application to the Pan-STARRS1 (PS1) 3 pi survey: variability amplitudes and timescales are estimated via light curve structure functions. Using PS1 3 pi data on the SDSS "Stripe 82" area whose classification is available, a supervised machine-learning classifier is trained to identify QSOs and RR Lyrae based on their variability and mean colors. This leads to quite complete and pure variability-selected samples of QSO and RR Lyrae (away from the Galactic disk), that are unmatched in their combination of area, depth and fidelity. The sample entails: 4.8 x 10^4 likely RR Lyrae in the Galactic halo, and 3.7 x 10^6 likely QSO. The resulting map of RR Lyrae candidates across 3/4 of the sky reveals targets to 130 kpc, with distances precise to 3%. In particular, the sample leads to an unprecedented map of distance and width of Sagittarius stream, as traced by RR Lyrae. Furthermore, the role of PS1 3 pi as pilot survey for the upcoming LSST survey is discussed

    Connecting the Milky Way potential profile to the orbital timescales and spatial structure of the Sagittarius Stream

    Get PDF
    Recent maps of the halo using RR Lyrae from Pan-STARRS1 have clearly depicted the spatial structure of the Sagittarius stream. These maps show the leading and trailing stream apocenters differ in galactocentric radius by a factor of two, and also resolve substructure in the stream at these apocenters. Here we present dynamical models that reproduce these features of the stream in simple Galactic potentials. We find that debris at the apocenters must be dynamically young, in the sense of being stripped off in the last two pericentric passages, while the Sagittarius dwarf is currently experiencing a third passage. The ratio of apocenters is sensitive to both dynamical friction and the outer slope of the Galactic rotation curve. These dependences can be understood with simple regularities connecting the apocentric radii, circular velocities, and orbital period of the progenitor. The effect of dynamical friction on the stream can be constrained using substructure within the leading apocenter. Our ensembles of models are not intended as statistically proper fits to the stream. Nevertheless, out of the range of models we consider, we consistently find the mass within 100 kpc to be 7×1011M\sim 7 \times 10^{11} \, M_{\odot}, with a nearly flat rotation curve between 50 and 100 kpc. This points to a more extended Galactic halo than assumed in some current models. As in previous work, we find prolate or triaxial halos ease agreement with the track of the leading stream. We display the behavior of our models in various observational spaces and characterize the substructure expected within the stream. In particular, the young trailing stream visible near trailing apocenter should exhibit a tight trend of velocity with distance separate from the older debris, and we suggest that this will serve as an especially useful probe of the outer Galactic potential.Comment: Submitted to MNRA

    Rubin Observatory LSST Transients and Variable Stars Roadmap

    Get PDF
    The Vera C. Rubin Legacy Survey of Space and Time holds the potential to revolutionize time domain astrophysics, reaching completely unexplored areas of the Universe and mapping variability time scales from minutes to a decade. To prepare to maximize the potential of the Rubin LSST data for the exploration of the transient and variable Universe, one of the four pillars of Rubin LSST science, the Transient and Variable Stars Science Collaboration, one of the eight Rubin LSST Science Collaborations, has identified research areas of interest and requirements, and paths to enable them. While our roadmap is ever-evolving, this document represents a snapshot of our plans and preparatory work in the final years and months leading up to the survey\u27s first light

    Long-period High-amplitude Red Variables in the KELT Survey

    Get PDF
    We present a sample of 4132 Mira-like variables (red variables with long periods and high amplitudes) in the Kilodegree Extremely Little Telescope (KELT) survey. Of these, 376 are new Mira-like detections. We used Two Micron All Sky Survey (2MASS) colors to identify candidate asymptotic giant branch stars. We searched for photometric variability among the candidate asymptotic giant branch stars and identified stars that show periodic variability. We selected variables with high amplitudes and strong periodic behavior using a Random Forest classifier. Of the sample of 4132 Mira-like variables, we estimate that 70% are Miras and 30% are semiregular (SR) variables. We also adopt the method of using (W_(RP) - W_(K)) versus (J - K_s) colors in distinguishing between O-rich and C-rich Miras and find it to be an improvement over 2MASS colors

    Connecting the Milky Way potential profile to the orbital time-scales and spatial structure of the Sagittarius Stream

    Get PDF
    Recent maps of the halo using RR Lyrae from Pan-STARRS1 depict the spatial structure of the Sagittarius stream, showing the leading and trailing stream apocentres differ in Galactocentric radius by a factor of 2, and also resolving substructure in the stream at these apocentres. Here we present dynamical models that reproduce these features of the stream in simple Galactic potentials. We find that debris at the apocentres must be dynamically young, being stripped off in pericentric passages either one or two orbital periods ago. The ratio of the leading and trailing apocentres is sensitive to both dynamical friction and the outer slope of the Galactic rotation curve. These dependencies can be understood with simple regularities connecting the apocentric radii, circular velocities, and orbital period of the progenitor. The effect of dynamical friction can be constrained using substructure within the leading apocentre. Our models are far from final; the errors allowed when sampling parameter space are deliberately generous, not every stream feature is reproduced, and we explore a limited set of potentials. Still, it is interesting that we consistently find the mass within 100 kpc to be ∼7×10^(11) M⊙⁠, with a nearly flat rotation curve between 50 and 100 kpc. This points to a more extended Galactic halo than assumed in some current models. We show one example model in various observational dimensions. A plot of velocity versus distance separates younger from older debris, and suggests that the young trailing debris will serve as an especially useful probe of the outer Galactic potential

    Constraints on the Galactic Inner Halo Assembly History from the Age Gradient of Blue Horizontal-branch Stars

    Get PDF
    We present an analysis of the relative age distribution of the Milky Way halo, based on samples of blue horizontal-branch (BHB) stars obtained from the Panoramic Survey Telescope and Rapid Response System and Galaxy Evolution Explorer photometry, as well a Sloan Digital Sky Survey spectroscopic sample. A machine-learning approach to the selection of BHB stars is developed, using support vector classification, with which we produce chronographic age maps of the Milky Way halo out to 40 kpc from the Galactic center. We identify a characteristic break in the relative age profiles of our BHB samples, corresponding to a Galactocentric radius of R_(GC) ~ 14 kpc. Within the break radius, we find an age gradient of −63.4 ± 8.2 Myr kpc^(−1), which is significantly steeper than obtained by previous studies that did not discern between the inner- and outer-halo regions. The gradient in the relative age profile and the break radius signatures persist after correcting for the influence of metallicity on our spectroscopic calibration sample. We conclude that neither are due to the previously recognized metallicity gradient in the halo, as one passes from the inner-halo to the outer-halo region. Our results are consistent with a dissipational formation of the inner-halo population, involving a few relatively massive progenitor satellites, such as those proposed to account for the assembly of Gaia-Enceladus, which then merged with the inner halo of the Milky Way
    corecore