192 research outputs found

    The molecular basis of glucose galactose malabsorption in a large Swedish pedigree

    Get PDF
    Glucose-galactose malabsorption (GGM) is due to mutations in the gene coding for the intestinal sodium glucose cotransporter SGLT1 (SLC5A1). Here we identify the rare variant Gln457Arg (Q457R) in a large pedigree of patients in the Vasterbotten County in Northern Sweden with the clinical phenotype of GGM. The functional effect of the Q457R mutation was determined in protein expressed in Xenopus laevis oocytes using biophysical and biochemical methods. The mutant failed to transport the specific SGLT1 sugar analog alpha-methyl-D-glucopyranoside (alphaMDG). Q457R SGLT1 was synthesized in amounts comparable to the wild-type (WT) transporter. SGLT1 charge measurements and freeze-fracture electron microscopy demonstrated that the mutant protein was inserted into the plasma membrane. Electrophysiological experiments, both steady-state and presteady-state, demonstrated that the mutant bound sugar with an affinity lower than the WT transporter. Together with our previous studies on Q457C and Q457E mutants, we established that the positive charge on Q457R prevented the translocation of sugar from the outward-facing to inward-facing conformation. This is contrary to other GGM cases where missense mutations caused defects in trafficking SGLT1 to the plasma membrane. Thirteen GGM patients are now added to the pedigree traced back to the late 17th century. The frequency of the Q457R variant in Vasterbotten County genomes, 0.0067, is higher than in the general Swedish population, 0.0015..

    The role of fatty aldehyde dehydrogenase in epidermal structure and function

    Get PDF
    The epidermal water barrier resides in the stratum corneum (SC) and is dependent on a highly organized network of multi-lamellar membranes comprised of a critical lipid composition. The SC membranes are formed from precursor membranes packaged in cytoplasmic lamellar bodies in the stratum granulosum and delivered to the SC by exocytosis. An abnormal lipid composition of the SC membranes often results in a disrupted water barrier and the clinical appearance of ichthyosis. This cutaneous feature is characteristic of Sjögren-Larsson syndrome (SLS), an inborn error of lipid metabolism caused by deficiency of fatty aldehyde dehydrogenase (FALDH). The contribution of FALDH to normal epidermal function has become increasingly evident with the recognition that this enzyme has an essential role in metabolism of several lipids, including fatty aldehydes and alcohols, ether glycerolipids, isoprenoid alcohols and certain lipids that undergo ω-oxidation, such as leukotriene B4 and very long-chain fatty acids. In the absence of FALDH, the skin produces lamellar bodies that are empty, lack their surrounding vesicle membranes or contain granular contents rather then the usual cargo membranes. These defective organelles also have impaired exocytosis, which results in structurally abnormal, deficient multi-lamellar membranes in the SC and a leaky water barrier. Although the exact biochemical mechanism for the cutaneous pathology is still unclear, studies in SLS demonstrate the critical importance of FALDH for normal epidermal structure and function

    Quality and Safety Aspects of Infant Nutrition

    Get PDF
    Quality and safety aspects of infant nutrition are of key importance for child health, but oftentimes they do not get much attention by health care professionals whose interest tends to focus on functional benefits of early nutrition. Unbalanced diets and harmful food components induce particularly high risks for untoward effects in infants because of their rapid growth, high nutrient needs, and their typical dependence on only one or few foods during the first months of life. The concepts, standards and practices that relate to infant food quality and safety were discussed at a scientific workshop organized by the Child Health Foundation and the Early Nutrition Academy jointly with the European Society for Paediatric Gastroenterology, Hepatology and Nutrition, and a summary is provided here. The participants reviewed past and current issues on quality and safety, the role of different stakeholders, and recommendations to avert future issues. It was concluded that a high level of quality and safety is currently achieved, but this is no reason for complacency. The food industry carries the primary responsibility for the safety and suitability of their products, including the quality of composition, raw materials and production processes. Introduction of new or modified products should be preceded by a thorough science based review of suitability and safety by an independent authority. Food safety events should be managed on an international basis. Global collaboration of food producers, food-safety authorities, paediatricians and scientists is needed to efficiently exchange information and to best protect public health. Copyright (C) 2012 S. Karger AG, Base

    Binding of Human Milk to Pathogen Receptor DC-SIGN Varies with Bile Salt-Stimulated Lipase (BSSL) Gene Polymorphism

    Get PDF
    OBJECTIVE: Dendritic cells bind an array of antigens and DC-SIGN has been postulated to act as a receptor for mucosal pathogen transmission. Bile salt-stimulated lipase (BSSL) from human milk potently binds DC-SIGN and blocks DC-SIGN mediated trans-infection of CD4(+) T-lymphocytes with HIV-1. Objective was to study variation in DC-SIGN binding properties and the relation between DC-SIGN binding capacity of milk and BSSL gene polymorphisms. STUDY DESIGN: ELISA and PCR were used to study DC-SIGN binding properties and BSSL exon 11 size variation for human milk derived from 269 different mothers distributed over 4 geographical regions. RESULTS: DC-SIGN binding properties were highly variable for milks derived from different mothers and between samplings from different geographical regions. Differences in DC-SIGN binding were correlated with a genetic polymorphism in BSSL which is related to the number of 11 amino acid repeats at the C-terminus of the protein. CONCLUSION: The observed variation in DC-SIGN binding properties among milk samples may have implications for the risk of mucosal transmission of pathogens during breastfeeding

    Prevalence of anemia and deficiency of iron, folic acid, and zinc in children younger than 2 years of age who use the health services provided by the Mexican Social Security Institute

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Mexico, as in other developing countries, micronutrient deficiencies are common in infants between 6 and 24 months of age and are an important public health problem. The objective of this study was to determine the prevalence of anemia and of iron, folic acid, and zinc deficiencies in Mexican children under 2 years of age who use the health care services provided by the Mexican Institute for Social Security (IMSS).</p> <p>Methods</p> <p>A nationwide survey was conducted with a representative sample of children younger than 2 years of age, beneficiaries, and users of health care services provided by IMSS through its regular regimen (located in urban populations) and its Oportunidades program (services offered in rural areas). A subsample of 4,955 clinically healthy children was studied to determine their micronutrient status. A venous blood sample was drawn to determine hemoglobin, serum ferritin, percent of transferrin saturation, zinc, and folic acid. Descriptive statistics include point estimates and 95% confidence intervals for the sample and projections for the larger population from which the sample was drawn.</p> <p>Results</p> <p>Twenty percent of children younger than 2 years of age had anemia, and 27.8% (rural) to 32.6% (urban) had iron deficiency; more than 50% of anemia was not associated with low ferritin concentrations. Iron stores were more depleted as age increased. Low serum zinc and folic acid deficiencies were 28% and 10%, respectively, in the urban areas, and 13% and 8%, respectively, in rural areas. The prevalence of simultaneous iron and zinc deficiencies was 9.2% and 2.7% in urban and rural areas. Children with anemia have higher percentages of folic acid deficiency than children with normal iron status.</p> <p>Conclusion</p> <p>Iron and zinc deficiencies constitute the principal micronutrient deficiencies in Mexican children younger than 2 years old who use the health care services provided by IMSS. Anemia not associated with low ferritin values was more prevalent than iron-deficiency anemia. The presence of micronutrient deficiencies at this early age calls for effective preventive public nutrition programs to address them.</p

    Triglyceride Blisters in Lipid Bilayers: Implications for Lipid Droplet Biogenesis and the Mobile Lipid Signal in Cancer Cell Membranes

    Get PDF
    Triglycerides have a limited solubility, around 3%, in phosphatidylcholine lipid bilayers. Using millisecond-scale course grained molecular dynamics simulations, we show that the model lipid bilayer can accommodate a higher concentration of triolein (TO) than earlier anticipated, by sequestering triolein molecules to the bilayer center in the form of a disordered, isotropic, mobile neutral lipid aggregate, at least 17 nm in diameter, which forms spontaneously, and remains stable on at least the microsecond time scale. The results give credence to the hotly debated existence of mobile neutral lipid aggregates of unknown function present in malignant cells, and to the early biogenesis of lipid droplets accommodated between the two leaflets of the endoplasmic reticulum membrane. The TO aggregates give the bilayer a blister-like appearance, and will hinder the formation of multi-lamellar phases in model, and possibly living membranes. The blisters will result in anomalous membrane probe partitioning, which should be accounted for in the interpretation of probe-related measurements

    Sensing of Dietary Lipids by Enterocytes: A New Role for SR-BI/CLA-1

    Get PDF
    BACKGROUND: The intestine is responsible for absorbing dietary lipids and delivering them to the organism as triglyceride-rich lipoproteins (TRL). It is important to determine how this process is regulated in enterocytes, the absorptive cells of the intestine, as prolonged postprandial hypertriglyceridemia is a known risk factor for atherosclerosis. During the postprandial period, dietary lipids, mostly triglycerides (TG) hydrolyzed by pancreatic enzymes, are combined with bile products and reach the apical membrane of enterocytes as postprandial micelles (PPM). Our aim was to determine whether these micelles induce, in enterocytes, specific early cell signaling events that could control the processes leading to TRL secretion. METHODOLOGY/PRINCIPAL FINDINGS: The effects of supplying PPM to the apex of Caco-2/TC7 enterocytes were analyzed. Micelles devoid of TG hydrolysis products, like those present in the intestinal lumen in the interprandial period, were used as controls. The apical delivery of PPM specifically induced a number of cellular events that are not induced by interprandial micelles. These early events included the trafficking of apolipoprotein B, a structural component of TRL, from apical towards secretory domains, and the rapid, dose-dependent activation of ERK and p38MAPK. PPM supply induced the scavenger receptor SR-BI/CLA-1 to cluster at the apical brush border membrane and to move from non-raft to raft domains. Competition, inhibition or knockdown of SR-BI/CLA-1 impaired the PPM-dependent apoB trafficking and ERK activation. CONCLUSIONS/SIGNIFICANCE: These results are the first evidence that enterocytes specifically sense postprandial dietary lipid-containing micelles. SR-BI/CLA-1 is involved in this process and could be a target for further study with a view to modifying intestinal TRL secretion early in the control pathway
    corecore