34 research outputs found

    Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: Electron microprobe and confocal microscopy studies

    No full text
    The manufacture and multiple uses of zinc oxide (ZnO) nanoparticles (NPs) will represent a possible source of soil contamination. Little is known about how these NPs transport in soil and plants. In this research, the transport of Zn/ZnO NPs in sandy loam soil and the uptake by corn plants (Zea mays) was investigated. Results showed that ZnO NPs exhibit low mobility in a soil column at various ionic strengths. Elution curves suggest that some of the adsorbed ZnO NPs/Zn were released in the presence of chemical perturbations. The breakthrough of released Zn coincided with Fe and Al (indicator of soil colloids) suggesting that soil colloids may act as carriers of strongly adsorbed NPs. By using electron microprobe, Zn/ZnO NPs aggregates were visualized associate with soil clay minerals. The uptake (mg/kg) of Zn by one-month old corn plants varied from 69 to 409 in roots and from 100 to 350 in shoots, respectively, in soils contaminated with different concentrations of ZnO NPs (from 100 to 800 mg NPs/kg soil). Confocal microscope images showed that ZnO NPs aggregates penetrated the root epidermis and cortex through the apoplastic pathway; however, the presence of some NP aggregates in xylem vessels suggests that the aggregates passed the endodermis through the symplastic pathway

    Toxicity of copper hydroxide nanoparticles, bulk copper hydroxide, and ionic copper to alfalfa plants: A spectroscopic and gene expression study

    No full text
    Bulk Cu compounds such as Cu(OH)2 are extensively used as pesticides in agriculture. Recent investigations suggest that Cu-based nanomaterials can replace bulk materials reducing the environmental impacts of Cu. In this study, stress responses of alfalfa (Medicago sativa L.) seedlings to Cu(OH)2 nanoparticle or compounds were evaluated. Seeds were immersed in suspension/solutions of a Cu(OH)2 nanoform, bulk Cu(OH)2, CuSO4, and Cu(NO3)2 at 25 and 75 mg/L. Six days later, the germination, seedling growth, and the physiological and biochemical responses of sprouts were evaluated. All Cu treatments significantly reduced root elongation (average = 63%). The ionic compounds at 25 and 75 mg/L caused a reduction in all elements analyzed (Ca, K, Mg, P, Zn, and Mn), excepting for S, Fe and Mo. The bulk-Cu(OH)2 treatment reduced K (48%) and P (52%) at 75 mg/L, but increased Zn at 25 (18%) and 75 (21%) mg/L. The nano-Cu(OH)2 reduced K (46%) and P (48%) at 75 mg/L, and also P (37%) at 25 mg/L, compared with control. Confocal microscopy images showed that all Cu compounds, at 75 mg/L, significantly reduced nitric oxide, concurring with the reduction in root growth. Nano Cu(OH)2 at 25 mg/L upregulated the expression of the Cu/Zn superoxide dismutase gene (1.92-fold), while ionic treatments at 75 mg/L upregulated (∼10-fold) metallothionein (MT) transcripts. Results demonstrated that nano and bulk Cu(OH)2 compounds caused less physiological impairments in comparison to the ionic ones in alfalfa seedlings
    corecore