2 research outputs found
Molecular Diversity of Giardia duodenalis, Cryptosporidium spp., and Blastocystis sp. in Symptomatic and Asymptomatic Schoolchildren in Zambézia Province (Mozambique).
Infections by the protist enteroparasites Giardia duodenalis, Cryptosporidium spp., and, to a much lesser extent, Blastocystis sp. are common causes of childhood diarrhoea in low-income countries. This molecular epidemiological study assesses the frequency and molecular diversity of these pathogens in faecal samples from asymptomatic schoolchildren (n = 807) and symptomatic children seeking medical attention (n = 286) in Zambézia province, Mozambique. Detection and molecular characterisation of pathogens was conducted by polymerase chain reaction (PCR)-based methods coupled with Sanger sequencing. Giardia duodenalis was the most prevalent enteric parasite found [41.7%, 95% confidence interval (CI): 38.8‒44.7%], followed by Blastocystis sp. (14.1%, 95% CI: 12.1‒16.3%), and Cryptosporidium spp. (1.6%, 95% CI: 0.9‒2.5%). Sequence analyses revealed the presence of assemblages A (7.0%, 3/43) and B (88.4%, 38/43) within G. duodenalis-positive children. Four Cryptosporidium species were detected, including C. hominis (30.8%; 4/13), C. parvum (30.8%, 4/13), C. felis (30.8%, 4/13), and C. viatorum (7.6%, 1/13). Four Blastocystis subtypes were also identified including ST1 (22.7%; 35/154), ST2 (22.7%; 35/154), ST3 (45.5%; 70/154), and ST4 (9.1%; 14/154). Most of the genotyped samples were from asymptomatic children. This is the first report of C. viatorum and Blastocystis ST4 in Mozambique. Molecular data indicate that anthropic and zoonotic transmission (the latter at an unknown rate) are important spread pathways of diarrhoea-causing pathogens in Mozambique.This research was funded by the Health Institute Carlos III (ISCIII), Ministry of Economy and Competitiveness (Spain), grant number PI16CIII/00024.S
Molecular Detection and Characterization of Blastocystis sp. and Enterocytozoon bieneusi in Cattle in Northern Spain
Some enteric parasites causing zoonotic diseases in livestock have been poorly studied or even neglected. This is the case in stramenopile Blastocystis sp. and the microsporidia Enterocytozoon bieneusi in Spain. This transversal molecular epidemiological survey aims to estimate the prevalence and molecular diversity of Blastocystis sp. and E. bieneusi in cattle faecal samples (n = 336) in the province of Álava, Northern Spain. Initial detection of Blastocystis and E. bieneusi was carried out by polymerase chain reaction (PCR) and Sanger sequencing of the small subunit (ssu) rRNA gene and internal transcribed spacer (ITS) region, respectively. Intra-host Blastocystis subtype diversity was further investigated by next generation amplicon sequencing (NGS) of the ssu rRNA gene in those samples that tested positive by conventional PCR. Amplicons compatible with Blastocystis sp. and E. bieneusi were observed in 32.1% (108/336, 95% CI: 27.2-37.4%) and 0.6% (2/336, 95% CI: 0.0-1.4%) of the cattle faecal samples examined, respectively. Sanger sequencing produced ambiguous/unreadable sequence data for most of the Blastocystis isolates sequenced. NGS allowed the identification of 10 Blastocystis subtypes including ST1, ST3, ST5, ST10, ST14, ST21, ST23, ST24, ST25, and ST26. All Blastocystis-positive isolates involved mixed infections of 2-8 STs in a total of 31 different combinations. The two E. bieneusi sequences were confirmed as potentially zoonotic genotype BEB4. Our data demonstrate that Blastocystis mixed subtype infections are extremely frequent in cattle in the study area. NGS was particularly suited to discern underrepresented subtypes or mixed subtype infections that were undetectable or unreadable by Sanger sequencing. The presence of zoonotic Blastocystis ST1, ST3, and ST5, and E. bieneusi BEB4 suggest cross-species transmission and a potential risk of human infection/colonization.This research was funded by the Health Institute Carlos III (ISCIII), Ministry of Science, Innovation and Universities (Spain), grant numbers PI16CIII/00024 and USDA-ARS Project No: 8042–32000-112–00-D.S