781 research outputs found

    Expression pattern of Stomatin-domain proteins in the peripheral olfactory system

    Get PDF
    Recent data show that Stomatin-like protein 3 (STOML3), a member of the stomatin-domain family, is expressed in the olfactory sensory neurons (OSNs) where it modulates both spontaneous and evoked action potential firing. The protein family is constituted by other 4 members (besides STOML3): STOM, STOML1, STOML2 and podocin. Interestingly, STOML3 with STOM and STOML1 are expressed in other peripheral sensory neurons: dorsal root ganglia. In here, they functionally interact and modulate the activity of the mechanosensitive Piezo channels and members of the ASIC family. Therefore, we investigated whether STOM and STOML1 are expressed together with STOML3 in the OSNs and whether they could interact. We found that all three are indeed expressed in ONSs, although STOML1 at very low level. STOM and STOML3 share a similar expression pattern and STOML3 is necessary for STOM to properly localize to OSN cilia. In addition, we extended our investigation to podocin and STOML2, and while the former is not expressed in the olfactory system, the latter showed a peculiar expression pattern in multiple cell types. In summary, we provided a first complete description of stomatin-domain protein family in the olfactory system, highlighting the precise compartmentalization, possible interactions and, finally, their functional implications

    Functional expression of TMEM16A in taste bud cells

    Get PDF
    Key points: Taste transduction occurs in taste buds in the tongue epithelium. The Ca2+-activated Cl– channels TMEM16A and TMEM16B play relevant physiological roles in several sensory systems. Here, we report that TMEM16A, but not TMEM16B, is expressed in the apical part of taste buds. Large Ca2+-activated Cl− currents blocked by Ani-9, a selective inhibitor of TMEM16A, are measured in type I taste cells but not in type II or III taste cells. ATP indirectly activates Ca2+-activated Cl– currents in type I cells through TMEM16A channels. These results indicate that TMEM16A is functional in type I taste cells and contribute to understanding the largely unknown physiological roles of these cells. Abstract: The Ca2+-activated Cl– channels TMEM16A and TMEM16B have relevant roles in many physiological processes including neuronal excitability and regulation of Cl– homeostasis. Here, we examined the presence of Ca2+-activated Cl– channels in taste cells of mouse vallate papillae by using immunohistochemistry and electrophysiological recordings. By using immunohistochemistry we showed that only TMEM16A, and not TMEM16B, was expressed in taste bud cells where it largely co-localized with the inwardly rectifying K+ channel KNCJ1 in the apical part of type I cells. By using whole-cell patch-clamp recordings in isolated cells from taste buds, we measured an average current of −1083 pA at −100 mV in 1.5 ÎŒm Ca2+ and symmetrical Cl– in type I cells. Ion substitution experiments and blockage by Ani-9, a specific TMEM16A channel blocker, indicated that Ca2+ activated anionic currents through TMEM16A channels. We did not detect any Ca2+-activated Cl– currents in type II or III taste cells. ATP is released by type II cells in response to various tastants and reaches type I cells where it is hydrolysed by ecto-ATPases. Type I cells also express P2Y purinergic receptors and stimulation of type I cells with extracellular ATP produced large Ca2+-activated Cl− currents blocked by Ani-9, indicating a possible role of TMEM16A in ATP-mediated signalling. These results provide a definitive demonstration that TMEM16A-mediated currents are functional in type I taste cells and provide a foundation for future studies investigating physiological roles for these often-neglected taste cells

    Conditional knockout of TMEM16A/anoctamin1 abolishes the calciumactivated chloride current in mouse vomeronasal sensory neurons

    Get PDF
    Pheromones are substances released from animals that, when detected by the vomeronasal organ of other individuals of the same species, affect their physiology and behavior. Pheromone binding to receptors on microvilli on the dendritic knobs of vomeronasal sensory neurons activates a second messenger cascade to produce an increase in intracellular Ca2+concentration. Here, we used whole-cell and inside-out patch-clamp analysis to provide a functional characterization of currents activated by Ca2+in isolated mouse vomeronasal sensory neurons in the absence of intracellular K+. In whole-cell recordings, the average current in 1.5 ÎŒM Ca2+and symmetrical Cl-was -382 pA at -100 mV. Ion substitution experiments and partial blockade by commonly used Cl-channel blockers indicated that Ca2+activates mainly anionic currents in these neurons. Recordings from inside-out patches from dendritic knobs of mouse vomeronasal sensory neurons confirmed the presence of Ca2+-activated Cl-channels in the knobs and/or microvilli. We compared the electrophysiological properties of the native currents with those mediated by heterologously expressed TMEM16A/anoctamin1 or TMEM16B/anoctamin2 Ca2+-activated Cl-channels, which are coexpressed in microvilli of mouse vomeronasal sensory neurons, and found a closer resemblance to those of TMEM16A. We used the Cre-loxP system to selectively knock out TMEM16A in cells expressing the olfactory marker protein, which is found in mature vomeronasal sensory neurons. Immunohistochemistry confirmed the specific ablation of TMEM16A in vomeronasal neurons. Ca2+-activated currents were abolished in vomeronasal sensory neurons of TMEM16A conditional knockout mice, demonstrating that TMEM16A is an essential component of Ca2+-activated Cl-currents in mouse vomeronasal sensory neurons

    TMEM16A calcium-activated chloride currents in supporting cells of the mouse olfactory epithelium

    Get PDF
    Glial-like supporting (or sustentacular) cells are important constituents of the olfactory epithelium that are involved in several physiological processes such as production of endocannabinoids, insulin, and ATP and regulation of the ionic composition of the mucus layer that covers the apical surface of the olfactory epithelium. Supporting cells express metabotropic P2Y purinergic receptors that generate ATP-induced Ca2+ signaling through the activation of a PLC-mediated cascade. Recently, we reported that a subpopulation of supporting cells expresses also the Ca2+-activated Cl- channel TMEM16A. Here, we sought to extend our understanding of a possible physiological role of this channel in the olfactory system by asking whether Ca2+ can activate Cl- currents mediated by TMEM16A. We use whole-cell patch-clamp analysis in slices of the olfactory epithelium to measure dose-response relations in the presence of various intracellular Ca2+ concentrations, ion selectivity, and blockage. We find that knockout of TMEM16A abolishes Ca2+-activated Cl- currents, demonstrating that TMEM16A is essential for these currents in supporting cells. Also, by using extracellular ATP as physiological stimuli, we found that the stimulation of purinergic receptors activates a large TMEM16A-dependent Cl- current, indicating a possible role of TMEM16A in ATP-mediated signaling. Altogether, our results establish that TMEM16A-mediated currents are functional in olfactory supporting cells and provide a foundation for future work investigating the precise physiological role of TMEM16A in the olfactory system

    Traditional Mapuche ecological knowledge in Patagonia, Argentina: fishes and other living beings inhabiting continental waters, as a reflection of processes of change

    Full text link

    Measurement of the total cross section and ρ -parameter from elastic scattering in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF

    Comparison of inclusive and photon-tagged jet suppression in 5.02 TeV Pb+Pb collisions with ATLAS

    Get PDF

    Measurement of the polarisation of single top quarks and antiquarks produced in the t-channel at √s = 13 TeV and bounds on the tWb dipole operator from the ATLAS experiment

    Get PDF
    A simultaneous measurement of the three components of the top-quark and top-antiquark polarisation vectors in t-channel single-top-quark production is presented. This analysis is based on data from proton–proton collisions at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 139 fb−1, collected with the ATLAS detector at the LHC. Selected events contain exactly one isolated electron or muon, large missing transverse momentum and exactly two jets, one being b-tagged. Stringent selection requirements are applied to discriminate t-channel single-top-quark events from the background contributions. The top-quark and top-antiquark polarisation vectors are measured from the distributions of the direction cosines of the charged-lepton momentum in the top-quark rest frame. The three components of the polarisation vector for the selected top-quark event sample are Pxâ€Č = 0.01 ± 0.18, Pyâ€Č = −0.029 ± 0.027, Pzâ€Č = 0.91 ± 0.10 and for the top-antiquark event sample they are Pxâ€Č = −0.02 ± 0.20, Pyâ€Č = −0.007 ± 0.051, Pzâ€Č = 0.79 ± 0.16. Normalised differential cross-sections corrected to a fiducial region at the stable-particle level are presented as a function of the charged-lepton angles for top-quark and top-antiquark events inclusively and separately. These measurements are in agreement with Standard Model predictions. The angular differential cross-sections are used to derive bounds on the complex Wilson coefficient of the dimension-six OtW operator in the framework of an effective field theory. The obtained bounds are CtW ∈ [−0.9, 1.4] and CitW ∈ [−0.8, 0.2], both at 95% confidence level. [Figure not available: see fulltext.]

    Search for flavour-changing neutral-current interactions of a top quark and a gluon in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A search is presented for the production of a single top quark via left-handed flavour-changing neutral-current (FCNC) interactions of a top quark, a gluon and an up or charm quark. Two production processes are considered: u+ g→ t and c+ g→ t. The analysis is based on proton–proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. The data set corresponds to an integrated luminosity of 139 fb- 1. Events with exactly one electron or muon, exactly one b-tagged jet and missing transverse momentum are selected, resembling the decay products of a singly produced top quark. Neural networks based on kinematic variables differentiate between events from the two signal processes and events from background processes. The measured data are consistent with the background-only hypothesis, and limits are set on the production cross-sections of the signal processes: σ(u+g→t)×B(t→Wb)×B(W→ℓΜ)<3.0pb and σ(c+g→t)×B(t→Wb)×B(W→ℓΜ)<4.7pb at the 95% confidence level, with B(W→ â„“Îœ) = 0.325 being the sum of branching ratios of all three leptonic decay modes of the W boson. Based on the framework of an effective field theory, the cross-section limits are translated into limits on the strengths of the tug and tcg couplings occurring in the theory: |CuGut|/Λ2<0.057TeV- 2 and |CuGct|/Λ2<0.14TeV- 2. These bounds correspond to limits on the branching ratios of FCNC-induced top-quark decays: B(t→ u+ g) < 0.61 × 10 - 4 and B(t→ c+ g) < 3.7 × 10 - 4

    Studies of new Higgs boson interactions through nonresonant HH production in the b¯bγγ fnal state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for nonresonant Higgs boson pair production in the b ÂŻbγγ fnal state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this fnal state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifer Îșλ but also of the quartic HHV V (V = W, Z) coupling modifer Îș2V . No signifcant excess above the expected background from Standard Model processes is observed. An observed upper limit ”HH < 4.0 is set at 95% confdence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confdence intervals for the coupling modifers are −1.4 < Îșλ < 6.9 and −0.5 < Îș2V < 2.7, assuming all other Higgs boson couplings except the one under study are fxed to the Standard Model predictions. The results are interpreted in the Standard Model efective feld theory and Higgs efective feld theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions
    • 

    corecore