197 research outputs found

    Gene therapy of liver cancer

    Get PDF
    The application of gene transfer technologies to the treatment of cancer has led to the development of new experimental approaches like gene directed enzyme/pro-drug therapy (GDEPT), inhibition of oncogenes and restoration of tumor-suppressor genes. In addition, gene therapy has a big impact on other fields like cancer immunotherapy, anti-angiogenic therapy and virotherapy. These strategies are being evaluated for the treatment of primary and metastatic liver cancer and some of them have reached clinical phases. We present a review on the basis and the actual status of gene therapy approaches applied to liver cancer

    New Oncolytic Adenoviruses with Hypoxia- and Estrogen Receptor-Regulated Replication

    Full text link
    Oncolytic adenoviruses with restricted replication can be produced if the expression of crucial transcription units of the virus is controlled by tissue- or tumor-specific promoters. Here we describe a method for the rapid incorporation of exogenous promoters into the E1A and E4 regions of the human adenovirus type 5 genome. Using this system, we have generated AdEHT2 and AdEHE2F, two conditionally replicative adenoviruses for the treatment of breast cancer. The expression of the E1A gene in both viruses is controlled by a minimal dual-specificity promoter that responds to estrogens and hypoxia. The tight regulation of E1A expression correlated with the ability of these viruses to replicate and kill human cancer cells that express estrogen receptors, or are maintained under hypoxic conditions. The telomerase reverse transcriptase (TERT) promoter and the E2F-1 promoter are preferentially activated in cancer cells. They were introduced into the E4 region of AdEHT2 and AdEHE2F, respectively. The telomerase core promoter failed to block the replication of the virus in telomerase-negative cells. In contrast, AdEHE2F was attenuated in nontransformed quiescent cells growing under normoxic conditions, suggesting that an intact pRB pathway with low levels of E2F transcription factors acts as a negative modulator for the virus. These data indicate that the simultaneous regulation of E1A and E4 viral transcription units by the appropriate combination of promoters can increase the tumor selectivity of oncolytic adenoviruses.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63195/1/104303402760293574.pd

    Application of a split-Cre system for high-capacity adenoviral vector amplification

    Get PDF
    Background and aims: High-capacity adenoviral vectors (HC-AdV) show extended DNA payload and stability of gene expression in vivo due to the absence of viral coding sequences. However, production requires methods to trans-complement viral proteins, usually through Helper Viruses (HV). The Cre/loxP system is frequently employed to remove the packaging signal in HV genomes, in order to avoid their encapsidation. However, chronic exposure to the Cre recombinase in packaging cells is detrimental. We have applied the dimerizable Cre system to overcome this limitation. Methods and results: Cre was split in two fragments devoid of recombinase function (N-terminal 244 and C-terminal 99 amino-acids). In one version of the system, interaction with both moieties was favored by rapamycin-dependent heterodimerization domains (DiCre). Other version contained only Cre sequences (oCre). We generated packaging cells and HVs expressing the complementary fragments and studied their performance for HC-AdV production. We found that both conformations avoided interference with the growth of packaging cells, and the oCre system was particularly suitable for HC-AdV amplification. Conclusions: The split-Cre system improves the performance of packaging cells and can reduce the time and cost of HC-AdV amplification up to 30% and 15%, respectively. This may contribute to the standardization of HC-AdV production

    Evaluation of bioluminescent imaging for noninvasive monitoring of colorectal cancer progression in the liver and its response to immunogene therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bioluminescent imaging (BLI) is based on the detection of light emitted by living cells expressing a luciferase gene. Stable transfection of luciferase in cancer cells and their inoculation into permissive animals allows the noninvasive monitorization of tumor progression inside internal organs. We have applied this technology for the development of a murine model of colorectal cancer involving the liver, with the aim of improving the pre-clinical evaluation of new anticancer therapies.</p> <p>Results</p> <p>A murine colon cancer cell line stably transfected with the luciferase gene (MC38Luc1) retains tumorigenicity in immunocompetent C57BL/6 animals. Intrahepatic inoculation of MC38Luc1 causes progressive liver infiltration that can be monitored by BLI. Compared with ultrasonography (US), BLI is more sensitive, but accurate estimation of tumor mass is impaired in advanced stages. We applied BLI to evaluate the efficacy of an immunogene therapy approach based on the liver-specific expression of the proinflammatory cytokine interleukin-12 (IL-12). Individualized quantification of light emission was able to determine the extent and duration of antitumor responses and to predict long-term disease-free survival.</p> <p>Conclusion</p> <p>We show that BLI is a rapid, convenient and safe technique for the individual monitorization of tumor progression in the liver. Evaluation of experimental treatments with complex mechanisms of action such as immunotherapy is possible using this technology.</p

    Evaluation of monocytes as carriers for armed oncolytic adenoviruses in murine and Syrian hamster models of cancer

    Get PDF
    Replication-competent (oncolytic) adenoviruses (OAV) can be adapted as vectors for the delivery of therapeutic genes, with the aim of extending the antitumor effect beyond direct cytolysis. Transgene expression using these vectors is usually intense but short-lived, and repeated administrations are hampered by the rapid appearance of neutralizing antibodies (NAbs). We have studied the performance of monocytes as cell carriers to improve transgene expression in cancer models established in athymic mice and immunocompetent Syrian hamsters. Human and hamster monocytic cell lines (MonoMac6 and HM-1, respectively) were loaded with replication-competent adenovirus-expressing luciferase. Intravenous administration of these cells caused a modest increase in transgene expression in tumor xenografts, but this effect was virtually lost in hamsters. In contrast, intratumoral administration of HM-1 cells allowed repeated cycles of expression and achieved partial protection from NAbs in preimmunized hamsters bearing pancreatic tumors. To explore the therapeutic potential of this approach, HM-1 cells were loaded with a hypoxia-inducible OAV expressing the immunostimulatory cytokine interleukin-12 (IL-12). Three cycles of treatment achieved a significant antitumor effect in the hamster model, and transgene expression was detected following each administration, in contrast with the rapid neutralization of the free virus. We propose monocytes as carriers for multiple intratumoral administrations of armed OAVs

    Intrahepatic injection of adenovirus reduces inflammation and increases gene transfer and therapeutic effect in mice

    Get PDF
    Recombinant adenoviruses (Ad) are among the most extensively used vectors for liver gene transfer. One of the major limitations for the clinical application of these vectors is the inflammatory immune response associated with systemic administration of high dose of virus. We evaluated the effect of Ad administration route on the inflammatory immune response and liver transgene expression. We compared direct intrahepatic injection (IH) with the systemic administration via tail vein (IV). IH injection of Ad resulted in a lower inflammatory response and a higher transgene expression. When a relatively low dose of virus was used, IV administration resulted in no detectable protein expression but production of proinflammatory cytokines. In contrast, IH administration induced high levels of transgene expression and no inflammation, although we detected a transient hypertransaminemia, which fully resolved within days. Furthermore, IH injection resulted in a faster protein expression being more intense at the site of injection, whereas IV administration caused slower but diffuse liver expression. IH injection also reduced the spreading of the virus to other organs. Independently of the route, depletion of Kupffer cells significantly enhanced the transduction efficiency of Ad. This effect was stronger when using IV injection, indicating that IH injection partially overcomes Kupffer cell phagocytic activity. Moreover, the antitumor efficacy of high-capacity-Ad encoding murine interleukin-12 (IL-12) was significantly greater when the vector was administered by IH injection than when given IV. In conclusion, IH injection of adenovirus represents a safe and efficient administration route for clinical applications of gene therapy targeting the liver

    Oxaliplatin in combination with liver-specific expression of interleukin 12 reduces the immunosuppressive microenvironment of tumours and eradicates metastatic colorectal cancer in mice

    Get PDF
    BACKGROUND AND AIMS: New options are needed for the management and prevention of colorectal cancer liver metastases. Interleukin 12 (IL-12) is an immunostimulatory cytokine with proven antitumour effect in animal models. Despite evidence indicating its biological effect in humans, neither the recombinant protein nor gene therapy vectors expressing IL-12 have shown a relevant benefit in patients with cancer. OBJECTIVE: To develop a new approach to overcome the difficulties in obtaining a suitable expression pattern and the immunosuppressive milieu in the tumours which contribute to this poor performance. METHODS: A high-capacity ('gutless') adenoviral vector carrying a liver-specific, mifepristone (Mif)-inducible system for the expression of IL-12 (HC-Ad/RUmIL-12) was used in combination with chemotherapy. Tumours were established in the liver of C57BL/6 mice by inoculation of MC38 colon cancer cells. RESULTS: Intrahepatic injection of HC-Ad/RUmIL-12 and tailored induction regimens allowed the maintenance of safe and efficient levels of IL-12 in vivo. An individualised, stepwise increase in the dose of Mif (125-4000 ÎĽg/kg) was needed to compensate for the progressive but transient downregulation of the inducible system. Repeated cycles of Mif induction (every 24 h for 10 days) were needed for optimal tumour eradication. However, complete protection against tumour rechallenge was seen in < 25% of the animals. The administration of oxaliplatin (5 mg/kg intraperitoneally) 3 days before starting the induction regimen achieved efficient elimination of liver metastases with a single cycle of IL-12 induction, and improved protection against tumour rechallenge. This was associated with a shift in the tumour microenvironment towards a more pro-immunogenic phenotype, with an increase in the CD8+/T regulatory cell ratio and a reduction in myeloid-derived suppressor cells. These effects were not seen with 5-fluorouracil, irinotecan or gemcitabine

    Epilepsy and neuropsychiatric comorbidities in mice carrying a recurrent Dravet syndrome SCN1A missense mutation

    Get PDF
    Dravet Syndrome (DS) is an encephalopathy with epilepsy associated with multiple neuropsychiatric comorbidities. In up to 90% of cases, it is caused by functional happloinsufficiency of the SCN1A gene, which encodes the alpha subunit of a voltage-dependent sodium channel (Nav1.1). Preclinical development of new targeted therapies requires accessible animal models which recapitulate the disease at the genetic and clinical levels. Here we describe that a C57BL/6 J knock-in mouse strain carrying a heterozygous, clinically relevant SCN1A mutation (A1783V) presents a full spectrum of DS manifestations. This includes 70% mortality rate during the first 8 weeks of age, reduced threshold for heat-induced seizures (4.7 °C lower compared with control littermates), cognitive impairment, motor disturbances, anxiety, hyperactive behavior and defects in the interaction with the environment. In contrast, sociability was relatively preserved. Electrophysiological studies showed spontaneous interictal epileptiform discharges, which increased in a temperature-dependent manner. Seizures were multifocal, with different origins within and across individuals. They showed intra/inter-hemispheric propagation and often resulted in generalized tonic-clonic seizures. 18F-labelled flourodeoxyglucose positron emission tomography (FDG-PET) revealed a global increase in glucose uptake in the brain of Scn1aWT/A1783V mice. We conclude that the Scn1aWT/A1783V model is a robust research platform for the evaluation of new therapies against DS
    • …
    corecore