9 research outputs found
A discrete linearizability test based on multiscale analysis
In this paper we consider the classification of dispersive linearizable
partial difference equations defined on a quad-graph by the multiple scale
reduction around their harmonic solution. We show that the A_1, A_2 and A_3
linearizability conditions restrain the number of the parameters which enter
into the equation. A subclass of the equations which pass the A_3
C-integrability conditions can be linearized by a Mobius transformation
A discrete linearizability test based on multiscale analysis
In this paper we consider the classification of dispersive linearizable partial difference equations defined on a quad-graph by the multiple scale reduction around their harmonic solution. We show that the A1, A2 and A3 linearizability conditions restrain the number of the parameters which enter into the equation. A subclass of the equations which pass the A3 C-integrability conditions can be linearized by a M枚bius transformation
On the Integrability of the Discrete Nonlinear Schroedinger Equation
In this letter we present an analytic evidence of the non-integrability of
the discrete nonlinear Schroedinger equation, a well-known discrete evolution
equation which has been obtained in various contexts of physics and biology. We
use a reductive perturbation technique to show an obstruction to its
integrability.Comment: 4 pages, accepted in EP
Classification of integrable discrete Klein-Gordon models
The Lie algebraic integrability test is applied to the problem of
classification of integrable Klein-Gordon type equations on quad-graphs. The
list of equations passing the test is presented containing several well-known
integrable models. A new integrable example is found, its higher symmetry is
presented.Comment: 12 pages, submitted to Physica Script