17 research outputs found

    Air Pollution in an Urban Area of Mexico: Sources of Emission (Vehicular, Natural, Industrial, and Brick Production)

    Get PDF
    In recent years, the interest in aerosol particles has increased due to concerns about the effects on human health. The study of the chemical characterization (organic matter, sulfates, nitrates, and black carbon) has improved the knowledge about the negative contribution of chemicals to the environment. The identification of secondary processes (from pollutants such as SO2, NOx, and PAHs) and their role when combined with environmental factors such as humidity, solar radiation, and temperature are also of interest. With this background, this chapter seeks to highlight the most recent findings on the chemical composition of aerosol particles in the ambient air of one of the main cities of Mexico: the Metropolitan Area of Guadalajara. This megalopolis has almost 60% of the population of the Jalisco state, approximately 2.2 million vehicles and an extensive artisan brick production. Furthermore, due to its geographical position, it experiences frequent episodes of thermal inversion and exposition to high levels of solar radiation, mainly during the first half of the year

    Time delay evaluation on thewater-leaving irradiance retrieved from empirical models and satellite imagery

    Get PDF
    Temporal delays and spatial randomness between ground-based data and satellite overpass involve important deviations between the empirical model output and real data; these are factors poorly considered in the model calibration. The inorganic matter-generated turbidity in Lake Chapala (Mexico) was taken as a study case to expose the influence of such factors. Ground-based data from this study and historical records were used as references. We take advantage of the at-surface reflectance from Landsat-8, sun-glint corrections, a reduced NIR-band range, and null organic matter incidence in these wavelengths to diminish the physical phenomena-related radiometric artifacts; leaving the spatio-temporal relationships as the principal factor inducing the model uncertainty. Non-linear correlations were assessed to calibrate the best empirical model; none of them presented a strong relationship (<73%), including that based on hourly delays. This last model had the best predictability only for the summer-fall season, explaining 71% of the turbidity variation in 2016, and 59% in 2017, with RMSEs < 24%. The instantaneous turbidity maps depicted the hydrodynamic complexity of the lake, highlighting a strong component of spatial randomness associated with the temporal delays. Reasonably, robust empirical models will be developed if several dates and sampling-sites are synchronized with more satellite overpasses.</p

    Desarrollo de sistema de control para la asignación, alquiler de aulas y otros servicios que ofrece el Departamento de Logística de Posgrado de la Universidad Centroamericana (SisCAA-Aulas)

    Get PDF
    Trabajo que describe el desarrollo de un sistema de control para la asignación, alquiler de aulas y otros servicios que ofrece el Departamento de Logística de Posgrado de la Universidad Centroamericana; el que permitirá controlar planificar y organizar los procesos de dicho Departamento

    Compuestos emergentes: implementación de métodos analíticos para extraer y cuantificar 17β-estradiol, 17⍺-etinilestradiol, ibuprofeno y naproxeno en agua

    No full text
    Los métodos implementados permitieron la cuantificación de dos esteroides (17β-estradiol y 17⍺-etinilestradiol) y dos fármacos (ibuprofeno y naproxeno) utilizando extracción en fase sólida (EFS) y cromatografía de líquidos de alta resolución con detector de arreglo de diodos (CLAR-DAD). Las condiciones de EFS con cartuchos C18 se evaluaron variando los tipos y las cantidades de disolvente de elución, condiciones de pH y la masa de muestra en el cartucho. La eficiencia se evaluó mediante la fortificación de muestras de agua con cantidades conocidas de los analitos en tres niveles de concentración distintos. Las recuperaciones encontradas indican que la eficiencia de los métodos es independiente de la cantidad de analito tratada en el rango de ensayo (p > 0.05) con recobros (promedio ± desviación estándar) para 17β-estradiol (86.9% ± 4.2), 17⍺-etinilestradiol (87.1% ± 6.1), ibuprofeno (89.4% ± 5.3) y naproxeno (85.9% ± 15), que reúnen criterios de aceptación suficientes para el control de calidad de futuras aplicaciones. Por lo tanto, los métodos propuestos son confiables para ser aplicados a muestras acuosas. Sin embargo será necesario probar su desempeño y ajustar sus condiciones cuando se analicen muestras más complejas

    Observed Daily Profiles of Polyaromatic Hydrocarbons and Quinones in the Gas and PM1 Phases: Sources and Secondary Production in a Metropolitan Area of Mexico

    No full text
    The diel variation of meteorological conditions strongly influences the formation processes of secondary air pollutants. However, due to the complexity of sampling highly reactive chemical compounds, significant information about their transformation and source can be lost when sampling over long periods, affecting the representativeness of the samples. In order to determine the contribution of primary and secondary sources to ambient levels of polyaromatic hydrocarbons (PAHs) and quinones, measurements of gas and PM1 phases were conducted at an urban site in the Guadalajara Metropolitan Area (GMA) using a 4-h sampling protocol. The relation between PAHs, quinones, criteria pollutants, and meteorology was also addressed using statistical analyses. Total PAHs (gas phase + PM1 phase) ambient levels ranged between 184.03 ng m−3 from 19:00 to 23:00 h and 607.90 ng m−3 from 07:00 to 11:00 h. These figures both coincide with the highest vehicular activity peak in the morning and at night near the sampling site, highlighting the dominant role of vehicular emissions on PAHs levels. For the gas phase, PAHs ranged from 177.59 to 595.03 ng m−3, while for PM1, they ranged between 4.81 and 17.44 ng m−3. The distribution of the different PAHs compounds between the gas and PM1 phases was consistent with their vapour pressure (p °L) reported in the literature, the PAHs with vapour pressure ≤ 1 × 10−3 Pa were partitioned to the PM1, and PAHs with vapour pressures ≥ 1 × 10−3 Pa were partitioned to the gas phase. PAHs diagnostic ratios confirmed an anthropogenic emission source, suggesting that incomplete gasoline and diesel combustion from motor vehicles represent the major share of primary emissions. Quinones ambient levels ranged between 18.02 ng m−3 at 19:00–23:00 h and 48.78 ng m−3 at 15:00–19:00 h, with significant increases during the daytime. The distribution of quinone species with vapour pressures (p °L) below 1 × 10−4 Pa were primarily partitioned to the PM1, and quinones with vapour pressures above 1 × 10−4 Pa were mainly partitioned to the gas phase. The analysis of the distribution of phases in quinones suggested emissions from primary sources and their consequent degradation in the gas phase, while quinones in PM1 showed mainly secondary formation modulated by UV, temperature, O3, and wind speed. The sampling protocol proposed in this study allowed obtaining detailed information on PAHs and quinone sources and their secondary processing to be compared to existing studies within the GMA

    Long-Term Analysis of Tropospheric Ozone in the Urban Area of Guadalajara, Mexico: A New Insight of an Alternative Criterion

    No full text
    Tropospheric ozone is an obligatorily-regulated pollutant, to ensure health protection and better air quality. Most countries have established maximum permissible limits (MPL) equal to 0.06 or 0.070 ppmv, but these could be insufficient considering the strictest MPL of the World Health Organization (WHO) guidelines. Such concentrations may still cause health damage to some groups of the population in urban areas. Additionally, the mean value is the principal statistical parameter for monitoring air pollution. This factor may be hiding critical ozone concentrations for public health. This work examines the mean and maximum ozone based on a multi-temporal analysis, to explore the use of a maximum average value as an air quality standard. The mean ozone had a remarkably stationary contrast; while, the maximum ozone emphasized a semi-permanent state of high pollution over the year. Diurnal variation highlights the differences of frequency between the mean and maximum ozone above any MPL, which is accentuated when compared with the WHO guidelines. Under the WHO-MPL, the mean ozone underestimates the highest concentrations; while the maximum ozone represents the extremely high concentrations observed over the year. Instead, the maximum average ozone becomes moderate; this preserves the proper, but conservative high concentrations, following similar temporal patterns as the mean ozone. This parameter is proposed to be adapted as an alternative statistical criterion to prevent negative effects on public health due to high and frequent ozone concentrations in subsequent years

    Long-Term Analysis of Tropospheric Ozone in the Urban Area of Guadalajara, Mexico: A New Insight of an Alternative Criterion

    No full text
    Tropospheric ozone is an obligatorily-regulated pollutant, to ensure health protection and better air quality. Most countries have established maximum permissible limits (MPL) equal to 0.06 or 0.070 ppmv, but these could be insufficient considering the strictest MPL of the World Health Organization (WHO) guidelines. Such concentrations may still cause health damage to some groups of the population in urban areas. Additionally, the mean value is the principal statistical parameter for monitoring air pollution. This factor may be hiding critical ozone concentrations for public health. This work examines the mean and maximum ozone based on a multi-temporal analysis, to explore the use of a maximum average value as an air quality standard. The mean ozone had a remarkably stationary contrast; while, the maximum ozone emphasized a semi-permanent state of high pollution over the year. Diurnal variation highlights the differences of frequency between the mean and maximum ozone above any MPL, which is accentuated when compared with the WHO guidelines. Under the WHO-MPL, the mean ozone underestimates the highest concentrations; while the maximum ozone represents the extremely high concentrations observed over the year. Instead, the maximum average ozone becomes moderate; this preserves the proper, but conservative high concentrations, following similar temporal patterns as the mean ozone. This parameter is proposed to be adapted as an alternative statistical criterion to prevent negative effects on public health due to high and frequent ozone concentrations in subsequent years

    Analysis of PAHs Associated with Particulate Matter PM2.5 in Two Places at the City of Cuernavaca, Morelos, México

    No full text
    This study was carried out between January and February 2013, at two sites in the city of Cuernavaca, México, using low-volume equipment. Fifteen Polycyclic aromatic hydrocarbons (PAHs), were identified by gas chromatography coupled with mass spectrometry. The total average concentration observed for PAHs was 24.0 ng·m−3, with the high molecular weight compounds being the most abundant. The estimated equivalent concentration for Benzo (a) P (BaPE) was 4.05 ng·m−3. Diagnostic ratios together with the principal components analysis (PCA) allowed for establishing coal burning and vehicle emissions as being the main sources of these compounds in the area. The PAHs used to calculate this index account for 51% of the 15 PAHs identified, which probably involves a risk to the exposed population

    Atmospheric Distribution of PAHs and Quinones in the Gas and PM1 Phases in the Guadalajara Metropolitan Area, Mexico: Sources and Health Risk

    No full text
    Polycyclic aromatic hydrocarbons (PAHs) and quinones in the gas phase and as submicron particles raise concerns due to their potentially carcinogenic and mutagenic properties. The majority of existing studies have investigated the formation of quinones, but it is also important to consider both the primary and secondary sources to estimate their contributions. The objectives of this study were to characterize PAHs and quinones in the gas and particulate matter (PM1) phases in order to identify phase distributions, sources, and cancer risk at two urban monitoring sites in the Guadalajara Metropolitan Area (GMA) in Mexico. The simultaneous gas and PM1 phases samples were analyzed using a gas chromatography–mass spectrometer. The lifetime lung cancer risk (LCR) due to PAH exposure was calculated to be 1.7 × 10−3, higher than the recommended risk value of 10−6, indicating a potential health hazard. Correlations between parent PAHs, criteria pollutants, and meteorological parameters suggest that primary sources are the main contributors to the Σ8 Quinones concentrations in PM1, while the secondary formation of 5,12-naphthacenequinone and 9,10-anthraquinone may contribute less to the observed concentration of quinones. Additionally, naphthalene, acenaphthene, fluorene, phenanthrene, and anthracene in PM1, suggest photochemical degradation into unidentified species. Further research is needed to determine how these compounds are formed
    corecore