42 research outputs found

    Emergent multilevel selection in a simple spatial model of the evolution of altruism

    Get PDF
    Theories on the evolutionary origins of altruistic behavior have a long history and have become a canonical part of the theory of evolution. Nevertheless, the mechanisms that allow altruism to appear and persist are still incompletely understood. It is well known, however, that the spatial structure of populations is an important determinant. In both theoretical and experimental studies, much attention has been devoted to populations that are subdivided into discrete groups. Such studies typically imposed the structure and dynamics of the groups by hand. Here, we instead present a simple individual-based model in which altruistic organisms spontaneously self-organize into spatially separated colonies that themselves reproduce by binary fission and hence behave as Darwinian entities in their own right. Using software to automatically track the rise and fall of colonies, we are able to apply formal theory on multilevel selection and thus quantify the within- and among-group dynamics. This reveals that individual colonies inevitably succumb to defectors in a within-colony "tragedy of the commons". Even so, altruism persists in the population because more altruistic colonies reproduce more frequently and drive less altruistic ones to extinction. Evidently, the colonies promote the selection of altruism but in turn depend on altruism for their existence; the selection of altruism hence involves a kind of evolutionary bootstrapping. The emergence of the colonies also depends crucially on the length scales of motility, altruism, and competition. This reconfirms the general relevance of these scales for social evolution, but also stresses that their impact can only be understood fully in the light of the emergent eco-evolutionary spatial patterns. The results also suggest that emergent spatial population patterns can function as a starting point for transitions of individuality

    The interplay between metabolic stochasticity and regulation in single E. coli cells

    Get PDF
    Metabolism is inherently stochastic at the cellular level. Whether cells actively regulate processes in response to these random internal variations is a fundamental problem that remains unaddressed, yet critical to understanding biological homeostasis. Here, we show that in E. coli cells, expression of the main catabolic enzymes is continuously adjusted in response to metabolic fluctuations under constant external conditions. This noise feedback is performed by the cAMP-CRP system, which controls transcription of the catabolic enzymes by modulating concentrations of the second messenger cAMP upon changes in metabolite abundance. Using time-lapse microscopy, genetic constructs that selectively disable cAMP-CRP noise feedback, and mathematical modelling, we show how fluctuations circulate through this hybrid metabolic-genetic network at sub cell-cycle timescales. This circulation of stochastic fluctuations is explained by four distinct noise propagation modes, one of which describes the continuous cAMP-CRP regulation. The model successfully predicts how noise circulation is impacted by C-sector under and over-expression. The results raise the question whether the cAMP-CRP system, as well as other metabolic regulation mechanisms, have evolved to manage internal metabolic fluctuations in addition to external growth conditions. We conjecture that second messengers may broadly function to control metabolic stochasticity and achieve cellular homeostasis

    Speed, Sensitivity, and Bistability in Auto-activating Signaling Circuits

    Get PDF
    Cells employ a myriad of signaling circuits to detect environmental signals and drive specific gene expression responses. A common motif in these circuits is inducible auto-activation: a transcription factor that activates its own transcription upon activation by a ligand or by post-transcriptional modification. Examples range from the two-component signaling systems in bacteria and plants to the genetic circuits of animal viruses such as HIV. We here present a theoretical study of such circuits, based on analytical calculations, numerical computations, and simulation. Our results reveal several surprising characteristics. They show that auto-activation can drastically enhance the sensitivity of the circuit's response to input signals: even without molecular cooperativity, an ultra-sensitive threshold response can be obtained. However, the increased sensitivity comes at a cost: auto-activation tends to severely slow down the speed of induction, a stochastic effect that was strongly underestimated by earlier deterministic models. This slow-induction effect again requires no molecular cooperativity and is intimately related to the bimodality recently observed in non-cooperative auto-activation circuits. These phenomena pose strong constraints on the use of auto-activation in signaling networks. To achieve both a high sensitivity and a rapid induction, an inducible auto-activation circuit is predicted to acquire low cooperativity and low fold-induction. Examples from Escherichia coli's two-component signaling systems support these predictions

    Transcriptional Regulation by Competing Transcription Factor Modules

    Get PDF
    Gene regulatory networks lie at the heart of cellular computation. In these networks, intracellular and extracellular signals are integrated by transcription factors, which control the expression of transcription units by binding to cis-regulatory regions on the DNA. The designs of both eukaryotic and prokaryotic cis-regulatory regions are usually highly complex. They frequently consist of both repetitive and overlapping transcription factor binding sites. To unravel the design principles of these promoter architectures, we have designed in silico prokaryotic transcriptional logic gates with predefined input–output relations using an evolutionary algorithm. The resulting cis-regulatory designs are often composed of modules that consist of tandem arrays of binding sites to which the transcription factors bind cooperatively. Moreover, these modules often overlap with each other, leading to competition between them. Our analysis thus identifies a new signal integration motif that is based upon the interplay between intramodular cooperativity and intermodular competition. We show that this signal integration mechanism drastically enhances the capacity of cis-regulatory domains to integrate signals. Our results provide a possible explanation for the complexity of promoter architectures and could be used for the rational design of synthetic gene circuits

    Emergent multilevel selection in a simple spatial model of the evolution of altruism

    Get PDF
    Theories on the evolutionary origins of altruistic behavior have a long history and have become a canonical part of the theory of evolution. Nevertheless, the mechanisms that allow altruism to appear and persist are still incompletely understood. The spatial structure of populations is known to be an important determinant. In both theoretical and experimental studies, much attention has been devoted to populations that are subdivided into discrete groups. Such studies typically imposed the structure and dynamics of the groups by hand. Here, we instead present a simple individual-based model in which organisms spontaneously self-organize into spatially separated colonies that themselves reproduce by binary fission and hence behave as Darwinian entities in their own right. Using software to automatically track the rise and fall of colonies, we are able to apply formal theory on multilevel selection and thus quantify the within- and among-group dynamics. This reveals that individual colonies inevitably succumb to defectors, resulting in within-colony "tragedies of the commons". Even so, altruism persists in the population because more altruistic colonies reproduce more frequently. The emergence of the colonies themselves depends crucially on the length scales of motility, altruism, and competition. This reconfirms the general relevance of these scales for social evolution, but also stresses that their impact can only be understood fully in the light of the emergent eco-evolutionary spatial patterns. The results also demonstrate that emergent spatial population patterns can function as a starting point for transitions of individuality

    Multiscale selection in spatially structured populations

    Get PDF
    The spatial structure of natural populations is key to many of their evolutionary processes. Formal theories analysing the interplay between natural selection and spatial structure have mostly focused on populations divided into distinct, non-overlapping groups. Most populations, however, are not structured in this way, but rather (self-)organise into dynamic patterns unfolding at various spatial scales. Here, we present a mathematical framework that quantifies how patterns and processes at different spatial scales contribute to natural selection in such populations. To that end, we define the Local Selection Differential (LSD): a measure of the selection acting on a trait within a given local environment. Based on the LSD, natural selection in a population can be decomposed into two parts: the contribution of local selection, acting within local environments, and the contribution of interlocal selection, acting among them. Varying the size of the local environments subsequently allows one to measure the contribution of each length scale. To illustrate the use of this new multiscale selection framework, we apply it to two simulation models of the evolution of traits known to be affected by spatial population structure: altruism and pathogen transmissibility. In both models, the spatial decomposition of selection reveals that local and interlocal selection can have opposite signs, thus providing a mathematically rigorous underpinning to intuitive explanations of how processes at different spatial scales may compete. It furthermore identifies which length scales---and hence which patterns---are relevant for natural selection. The multiscale selection framework can thus be used to address complex questions on evolution in spatially structured populations

    The effect of natural selection on the propagation of protein expression noise to bacterial growth

    Get PDF
    In bacterial cells, protein expression is a highly stochastic process. Gene expression noise moreover propagates through the cell and adds to fluctuations in the cellular growth rate. A common intuition is that, due to their relatively high noise amplitudes, proteins with a low mean expression level are the most important drivers of fluctuations in physiological variables. In this work, we challenge this intuition by considering the effect of natural selection on noise propagation. Mathematically, the contribution of each protein species to the noise in the growth rate depends on two factors: The noise amplitude of the protein's expression level, and the sensitivity of the growth rate to fluctuations in that protein's concentration. We argue that natural selection, while shaping mean abundances to increase the mean growth rate, also affects cellular sensitivities. In the limit in which cells grow optimally fast, the growth rate becomes most sensitive to fluctuations in highly abundant proteins. This causes abundant proteins to overall contribute strongly to the noise in the growth rate, despite their low noise levels. We further explore this result in an experimental data set of protein abundances, and test key assumptions in an evolving, stochastic toy model of cellular growth

    Hierarchical and simultaneous utilization of carbon substrates: mechanistic insights, physiological roles, and ecological consequences

    No full text
    Bacteria grown on a mixture of carbon substrates exhibit two utilization patterns: hierarchical utilization (HU) and simultaneous utilization (SU). How and why cells adopt these different behaviors remains poorly understood despite decades of research. Recent studies address various open questions from multiple viewpoints. From a mechanistic perspective, it was found that flux sensors play a central role in the regulation of substrate utilization, accounting for the known dependences on single-substrate growth rates, substrate concentrations, and the point where the substrate enters central metabolism. From a physiological perspective, several recent studies suggested HU or SU as growth-optimizing strategies through efficient allocation of essential proteome resources. However, other studies demonstrate that a significant fraction of the proteome is dedicated to functions apparently unnecessary for growth, casting doubt on explanations based on slight efficiency gains. From an ecological perspective, recent theoretical studies suggest that HU can help increase species diversity in bacterial communities
    corecore