7 research outputs found

    TRPM7 Provides an Ion Channel Mechanism for Cellular Entry of Trace Metal Ions

    Get PDF
    Trace metal ions such as Zn2+, Fe2+, Cu2+, Mn2+, and Co2+ are required cofactors for many essential cellular enzymes, yet little is known about the mechanisms through which they enter into cells. We have shown previously that the widely expressed ion channel TRPM7 (LTRPC7, ChaK1, TRP-PLIK) functions as a Ca2+- and Mg2+-permeable cation channel, whose activity is regulated by intracellular Mg2+ and Mg2+·ATP and have designated native TRPM7-mediated currents as magnesium-nucleotide–regulated metal ion currents (MagNuM). Here we report that heterologously overexpressed TRPM7 in HEK-293 cells conducts a range of essential and toxic divalent metal ions with strong preference for Zn2+ and Ni2+, which both permeate TRPM7 up to four times better than Ca2+. Similarly, native MagNuM currents are also able to support Zn2+ entry. Furthermore, TRPM7 allows other essential metals such as Mn2+ and Co2+ to permeate, and permits significant entry of nonphysiologic or toxic metals such as Cd2+, Ba2+, and Sr2+. Equimolar replacement studies substituting 10 mM Ca2+ with the respective divalent ions reveal a unique permeation profile for TRPM7 with a permeability sequence of Zn2+ ≈ Ni2+ >> Ba2+ > Co2+ > Mg2+ ≥ Mn2+ ≥ Sr2+ ≥ Cd2+ ≥ Ca2+, while trivalent ions such as La3+ and Gd3+ are not measurably permeable. With the exception of Mg2+, which exerts strong negative feedback from the intracellular side of the pore, this sequence is faithfully maintained when isotonic solutions of these divalent cations are used. Fura-2 quenching experiments with Mn2+, Co2+, or Ni2+ suggest that these can be transported by TRPM7 in the presence of physiological levels of Ca2+ and Mg2+, suggesting that TRPM7 represents a novel ion-channel mechanism for cellular metal ion entry into vertebrate cells

    The evolution of a series of behavioral traits is associated with autism-risk genes in cavefish

    No full text
    Background An essential question in evolutionary biology is whether shifts in a set of polygenic behaviors share a genetic basis across species. Such a behavioral shift is seen in the cave-dwelling Mexican tetra, Astyanax mexicanus. Relative to surface-dwelling conspecifics, cavefish do not school (asocial), are hyperactive and sleepless, adhere to a particular vibration stimulus (imbalanced attention), behave repetitively, and show elevated stress hormone levels. Interestingly, these traits largely overlap with the core symptoms of human autism spectrum disorder (ASD), raising the possibility that these behavioral traits are underpinned by a similar set of genes (i.e. a repeatedly used suite of genes). Result Here, we explored whether modification of ASD-risk genes underlies cavefish evolution. Transcriptomic analyses revealed that \u3e 58.5% of 3152 cavefish orthologs to ASD-risk genes are significantly up- or down-regulated in the same direction as genes in postmortem brains from ASD patients. Enrichment tests suggest that ASD-risk gene orthologs in A. mexicanus have experienced more positive selection than other genes across the genome. Notably, these positively selected cavefish ASD-risk genes are enriched for pathways involved in gut function, inflammatory diseases, and lipid/energy metabolism, similar to symptoms that frequently coexist in ASD patients. Lastly, ASD drugs mitigated cavefish’s ASD-like behaviors, implying shared aspects of neural processing. Conclusion Overall, our study indicates that ASD-risk genes and associated pathways (especially digestive, immune and metabolic pathways) may be repeatedly used for shifts in polygenic behaviors across evolutionary time

    The evolution of a series of behavioral traits is associated with autism-risk genes in cavefish

    No full text
    Background An essential question in evolutionary biology is whether shifts in a set of polygenic behaviors share a genetic basis across species. Such a behavioral shift is seen in the cave-dwelling Mexican tetra, Astyanax mexicanus. Relative to surface-dwelling conspecifics, cavefish do not school (asocial), are hyperactive and sleepless, adhere to a particular vibration stimulus (imbalanced attention), behave repetitively, and show elevated stress hormone levels. Interestingly, these traits largely overlap with the core symptoms of human autism spectrum disorder (ASD), raising the possibility that these behavioral traits are underpinned by a similar set of genes (i.e. a repeatedly used suite of genes). Result Here, we explored whether modification of ASD-risk genes underlies cavefish evolution. Transcriptomic analyses revealed that \u3e 58.5% of 3152 cavefish orthologs to ASD-risk genes are significantly up- or down-regulated in the same direction as genes in postmortem brains from ASD patients. Enrichment tests suggest that ASD-risk gene orthologs in A. mexicanus have experienced more positive selection than other genes across the genome. Notably, these positively selected cavefish ASD-risk genes are enriched for pathways involved in gut function, inflammatory diseases, and lipid/energy metabolism, similar to symptoms that frequently coexist in ASD patients. Lastly, ASD drugs mitigated cavefish’s ASD-like behaviors, implying shared aspects of neural processing. Conclusion Overall, our study indicates that ASD-risk genes and associated pathways (especially digestive, immune and metabolic pathways) may be repeatedly used for shifts in polygenic behaviors across evolutionary time

    Dissociation of the store-operated calcium current ICRAC and the Mg-nucleotide-regulated metal ion current MagNuM

    No full text
    Rat basophilic leukaemia cells (RBL-2H3-M1) were used to study the characteristics of the store-operated Ca2+ release-activated Ca2+ current (ICRAC) and the magnesium-nucleotide-regulated metal cation current (MagNuM) (which is conducted by the LTRPC7 channel). Pipette solutions containing 10 mm BAPTA and no added ATP induced both currents in the same cell, but the time to half-maximal activation for MagNuM was about two to three times slower than that of ICRAC. Differential suppression of ICRAC was achieved by buffering free [Ca2+]i to 90 nm and selective inhibition of MagNuM was accomplished by intracellular solutions containing 6 mm Mg.ATP, 1.2 mm free [Mg2+]i or 100 μm GTP-γ-S, allowing investigations on these currents in relative isolation. Removal of extracellular Ca2+ and Mg2+ caused both currents to be carried significantly by monovalent ions. In the absence or presence of free [Mg2+]i, ICRAC carried by monovalent ions inactivated more rapidly and more completely than MagNuM carried by monovalent ions. Since several studies have used divalent-free solutions on either side of the membrane to study selectivity and single-channel behaviour of ICRAC, these experimental conditions would have favoured the contribution of MagNuM to monovalent conductance and call for caution in interpreting results where both ICRAC and MagNuM are activated

    The evolution of a series of behavioral traits is associated with autism-risk genes in cavefish

    No full text
    Abstract Background An essential question in evolutionary biology is whether shifts in a set of polygenic behaviors share a genetic basis across species. Such a behavioral shift is seen in the cave-dwelling Mexican tetra, Astyanax mexicanus. Relative to surface-dwelling conspecifics, cavefish do not school (asocial), are hyperactive and sleepless, adhere to a particular vibration stimulus (imbalanced attention), behave repetitively, and show elevated stress hormone levels. Interestingly, these traits largely overlap with the core symptoms of human autism spectrum disorder (ASD), raising the possibility that these behavioral traits are underpinned by a similar set of genes (i.e. a repeatedly used suite of genes). Result Here, we explored whether modification of ASD-risk genes underlies cavefish evolution. Transcriptomic analyses revealed that > 58.5% of 3152 cavefish orthologs to ASD-risk genes are significantly up- or down-regulated in the same direction as genes in postmortem brains from ASD patients. Enrichment tests suggest that ASD-risk gene orthologs in A. mexicanus have experienced more positive selection than other genes across the genome. Notably, these positively selected cavefish ASD-risk genes are enriched for pathways involved in gut function, inflammatory diseases, and lipid/energy metabolism, similar to symptoms that frequently coexist in ASD patients. Lastly, ASD drugs mitigated cavefish’s ASD-like behaviors, implying shared aspects of neural processing. Conclusion Overall, our study indicates that ASD-risk genes and associated pathways (especially digestive, immune and metabolic pathways) may be repeatedly used for shifts in polygenic behaviors across evolutionary time

    Altered functional properties of a TRPM2 variant in Guamanian ALS and PD

    No full text
    Two related neurodegenerative disorders, Western Pacific amyotrophic lateral sclerosis (ALS) and parkinsonism–dementia (PD), originally occurred at a high incidence on Guam, in the Kii peninsula of Japan, and in southern West New Guinea more than 50 years ago. These three foci shared a unique mineral environment characterized by the presence of severely low levels of Ca2+ and Mg2+, coupled with high levels of bioavailable transition metals in the soil and drinking water. Epidemiological studies suggest that genetic factors also contribute to the etiology of these disorders. Here, we report that a variant of the transient receptor potential melastatin 2 (TRPM2) gene may confer susceptibility to these diseases. TRPM2 encodes a calcium-permeable cation channel highly expressed in the brain that has been implicated in mediating cell death induced by oxidants. We found a heterozygous variant of TRPM2 in a subset of Guamanian ALS (ALS-G) and PD (PD-G) cases. This variant, TRPM2P1018L, produces a missense change in the channel protein whereby proline 1018 (Pro1018) is replaced by leucine (Leu1018). Functional studies revealed that, unlike WT TRPM2, P1018L channels inactivate. Our results suggest that the ability of TRPM2 to maintain sustained ion influx is a physiologically important function and that its disruption may, under certain conditions, contribute to disease states
    corecore