58 research outputs found

    How Stochastic is the Relative Bias Between Galaxy Types?

    Full text link
    Examining the nature of the relative clustering of different galaxy types can help tell us how galaxies formed. To measure this relative clustering, I perform a joint counts-in-cells analysis of galaxies of different spectral types in the Las Campanas Redshift Survey (LCRS). I develop a maximum-likelihood technique to fit for the relationship between the density fields of early- and late-type galaxies. This technique can directly measure nonlinearity and stochasticity in the biasing relation. At high significance, a small amount of stochasticity is measured, corresponding to a correlation coefficient of about 0.87 on scales corresponding to 15 Mpc/h spheres. A large proportion of this signal appears to derive from errors in the selection function, and a more realistic estimate finds a correlation coefficient of about 0.95. These selection function errors probably account for the large stochasticity measured by Tegmark & Bromley (1999), and may have affected measurements of very large-scale structure in the LCRS. Analysis of the data and of mock catalogs shows that the peculiar geometry, variable flux limits, and central surface-brightness selection effects of the LCRS do not seem to cause the effect.Comment: 38 pages, 14 figures. Submitted to Apj. Modified from a chapter of my Ph.D. Thesis at Princeton University, available at http://www-astro-theory.fnal.gov/Personal/blanton/thesis/index.htm

    Stochasticity of Bias and Nonlocality of Galaxy Formation: Linear Scales

    Get PDF
    If one wants to represent the galaxy number density at some point in terms of only the mass density at the same point, there appears the stochasticity in such a relation, which is referred to as ``stochastic bias''. The stochasticity is there because the galaxy number density is not merely a local function of a mass density field, but it is a nonlocal functional, instead. Thus, the phenomenological stochasticity of the bias should be accounted for by nonlocal features of galaxy formation processes. Based on mathematical arguments, we show that there are simple relations between biasing and nonlocality on linear scales of density fluctuations, and that the stochasticity in Fourier space does not exist on linear scales under a certain condition, even if the galaxy formation itself is a complex nonlinear and nonlocal precess. The stochasticity in real space, however, arise from the scale-dependence of bias parameter, bb. As examples, we derive the stochastic bias parameters of simple nonlocal models of galaxy formation, i.e., the local Lagrangian bias models, the cooperative model, and the peak model. We show that the stochasticity in real space is also weak, except on the scales of nonlocality of the galaxy formation. Therefore, we do not have to worry too much about the stochasticity on linear scales, especially in Fourier space, even if we do not know the details of galaxy formation process.Comment: 24 pages, latex, including 2 figures, ApJ, in pres

    The scale-dependence of relative galaxy bias: encouragement for the halo model description

    Full text link
    We investigate the relationship between the colors, luminosities, and environments of galaxies in the Sloan Digital Sky Survey spectroscopic sample, using environmental measurements on scales ranging from 0.2 to 6 Mpc/h. We find: (1) that the relationship between color and environment persists even to the lowest luminosities we probe (absolute magnitude in the r band of about -14 for h=1); (2) at luminosities and colors for which the galaxy correlation function has a large amplitude, it also has a steep slope; and (3) in regions of a given overdensity on small scales (1 Mpc/h), the overdensity on large scales (6 Mpc/h) does not appear to relate to the recent star formation history of the galaxies. Of these results, the last has the most immediate application to galaxy formation theory. In particular, it lends support to the notion that a galaxy's properties are related only to the mass of its host dark matter halo, and not to the larger scale environment.Comment: submitted to ApJ; full resolution figures and slide material available at http://cosmo.nyu.edu/blanton/scale_density.htm

    Southern Sky Redshift Survey: Clustering of Local Galaxies

    Get PDF
    We use the two-point correlation function to calculate the clustering properties of the recently completed SSRS2 survey. The redshift space correlation function for the magnitude-limited SSRS2 is given by xi(s)=(s/5.85 h-1 Mpc)^{-1.60} for separations between 2 < s < 11 h-1 Mpc, while our best estimate for the real space correlation function is xi(r) = (r/5.36 h-1 Mpc)^{-1.86}. Both are comparable to previous measurements using surveys of optical galaxies over much larger and independent volumes. By comparing the correlation function calculated in redshift and real space we find that the redshift distortion on intermediate scales is small. This result implies that the observed redshift-space distribution of galaxies is close to that in real space, and that beta = Omega^{0.6}/b < 1, where Omega is the cosmological density parameter and b is the linear biasing factor for optical galaxies. We also use the SSRS2 to study the dependence of xi on the internal properties of galaxies. We confirm earlier results that luminous galaxies (L>L*) are more clustered than sub-L* galaxies and that the luminosity segregation is scale-independent. We find that early types are more clustered than late types, but that in the absence of rich clusters, the relative bias between early and late types in real space, is not as strong as previously estimated. Furthermore, both morphologies present a luminosity-dependent bias, with the early types showing a slightly stronger dependence on luminosity. We also find that red galaxies are significantly more clustered than blue ones, with a mean relative bias stronger than that seen for morphology. Finally, we find that the relative bias between optical and iras galaxies in real space is b_o/b_I \sim 1.4.Comment: 43 pages, uses AASTeX 4.0 macros. Includes 8 tables and 16 Postscript figures, updated reference

    Redshift-Space Distortions and the Real-Space Clustering of Different Galaxy Types

    Get PDF
    We study the distortions induced by peculiar velocities on the redshift-space correlation function of galaxies of different morphological types in the Pisces-Perseus redshift survey. Redshift-space distortions affect early- and late-type galaxies in different ways. In particular, at small separations, the dominant effect comes from virialized cluster cores, where ellipticals are the dominant population. The net result is that a meaningful comparison of the clustering strength of different morphological types can be performed only in real space, i.e., after projecting out the redshift distortions on the two-point correlation function xi(r_p,pi). A power-law fit to the projected function w_p(r_p) on scales smaller than 10/h Mpc gives r_o = 8.35_{-0.76}^{+0.75} /h Mpc, \gamma = 2.05_{-0.08}^{+0.10} for the early-type population, and r_o = 5.55_{-0.45}^{+0.40} /h Mpc, \gamma = 1.73_{-0.08}^{+0.07} for spirals and irregulars. These values are derived for a sample luminosity brighter than M_{Zw} = -19.5. We detect a 25% increase of r_o with luminosity for all types combined, from M_{Zw} = -19 to -20. In the framework of a simple stable-clustering model for the mean streaming of pairs, we estimate sigma_12(1), the one-dimensional pairwise velocity dispersion between 0 and 1 /h Mpc, to be 865^{+250}_{-165} km/s for early-type galaxies and 345^{+95}_{-65} km/s for late types. This latter value should be a fair estimate of the pairwise dispersion for ``field'' galaxies; it is stable with respect to the presence or absence of clusters in the sample, and is consistent with the values found for non-cluster galaxies and IRAS galaxies at similar separations.Comment: 17 LaTeX pages including 3 tables, plus 11 PS figures. Uses AASTeX macro package (aaspp4.sty) and epsf.sty. To appear on ApJ, 489, Nov 199

    Bias and Hierarchical Clustering

    Get PDF
    It is now well established that galaxies are biased tracers of the distribution of matter, although it is still not known what form this bias takes. In local bias models the propensity for a galaxy to form at a point depends only on the overall density of matter at that point. Hierarchical scaling arguments allow one to build a fully-specified model of the underlying distribution of matter and to explore the effects of local bias in the regime of strong clustering. Using a generating-function method developed by Bernardeau & Schaeffer (1992), we show that hierarchical models lead one directly to the conclusion that a local bias does not alter the shape of the galaxy correlation function relative to the matter correlation function on large scales. This provides an elegant extension of a result first obtained by Coles (1993) for Gaussian underlying fields and confirms the conclusions of Scherrer & Weinberg (1998) obtained using a different approach. We also argue that particularly dense regions in a hierarchical density field display a form of bias that is different from that obtained by selecting such peaks in Gaussian fields: they are themselves hierarchically distributed with scaling parameters Sp=p(p2)S_p=p^{(p-2)}. This kind of bias is also factorizable, thus in principle furnishing a simple test of this class of models.Comment: Latex, accepted for publication in ApJL; moderate revision

    Relationship between environment and the broad-band optical properties of galaxies in the SDSS

    Full text link
    We examine the relationship between environment and the luminosities, surface brightnesses, colors, and profile shapes of luminous galaxies in the Sloan Digital Sky Survey (SDSS). For the SDSS sample, galaxy color is the galaxy property most predictive of the local environment. Galaxy color and luminosity jointly comprise the most predictive pair of properties. At fixed luminosity and color, density is not closely related to surface brightness or to Sersic index -- the parameter in this study that astronomers most often associate with morphology. In the text, we discuss what measureable residual relationships exist, generally finding that at red colors and fixed luminosity, the mean density decreases at the highest surface brightnesses and Sersic indices. In general, these results suggest that the morphological properties of galaxies are less closely related to galaxy environment than are their masses and star-formation histories.Comment: submitted to ApJ, pedagogy and bitmapped figures for presentations available at http://cosmo.nyu.edu/blanton/full_density.htm

    Measuring the Nonlinear Biasing Function from a Galaxy Redshift Survey

    Get PDF
    We present a simple method for evaluating the nonlinear biasing function of galaxies from a redshift survey. The nonlinear biasing is characterized by the conditional mean of the galaxy density fluctuation given the underlying mass density fluctuation, or by the associated parameters of mean biasing and nonlinearity (following Dekel & Lahav 1999). Using the distribution of galaxies in cosmological simulations, at smoothing of a few Mpc, we find that the mean biasing can be recovered to a good accuracy from the cumulative distribution functions (CDFs) of galaxies and mass, despite the biasing scatter. Then, using a suite of simulations of different cosmological models, we demonstrate that the matter CDF is robust compared to the difference between it and the galaxy CDF, and can be approximated for our purpose by a cumulative log-normal distribution of 1+\delta with a single parameter \sigma. Finally, we show how the nonlinear biasing function can be obtained with adequate accuracy directly from the observed galaxy CDF in redshift space. Thus, the biasing function can be obtained from counts in cells once the rms mass fluctuation at the appropriate scale is assumed a priori. The relative biasing function between different galaxy types is measurable in a similar way. The main source of error is sparse sampling, which requires that the mean galaxy separation be smaller than the smoothing scale. Once applied to redshift surveys such as PSCz, 2dF, SDSS, or DEEP, the biasing function can provide valuable constraints on galaxy formation and structure evolution.Comment: 23 pages, 7 figures, revised version, accepted for publication in Ap

    The Masses, Ancestors and Descendents of Extremely Red Objects: Constraints from Spatial Clustering

    Get PDF
    Wide field near-infrared (IR) surveys have revealed a population of galaxies with very red optical-IR colors, which have been termed ``Extremely Red Objects'' (EROs). Modeling suggests that such red colors (R-K > 5) could be produced by galaxies at z>~1 with either very old stellar populations or very high dust extinction. Recently it has been discovered that EROs are strongly clustered. Are these objects the high-redshift progenitors of present day giant ellipticals (gEs)? Are they already massive at this epoch? Are they the descendents of the z3z\sim3 Lyman Break Galaxies (LBG), which have also been identified as possible high redshift progenitors of giant ellipticals? We address these questions within the framework of the Cold Dark Matter paradigm using an analytic model that connects the number density and clustering or bias of an observed population with the halo occupation function (the number of observed galaxies per halo of a given mass). We find that EROs reside in massive dark matter halos, with average mass > 1E13/h100 Msun. The occupation function that we derive for EROs is very similar to the one we derive for z=0, L>L* early type galaxies, whereas the occupation function for LBGs is skewed towards much smaller host halo masses ( ~ 1E11 to 1E12/h100 Msun. We then use the derived occupation function parameters to explore the possible evolutionary connections between these three populations.Comment: Replaced to match version accepted for publication in ApJ. New model added; appendix added with dark matter correlation function fits. 12 pages, uses emulateapj5.st

    Galaxy Clustering Evolution in the UH8K Weak Lensing Fields

    Get PDF
    We present measurements of the two-point galaxy angular correlation function as a function of apparent magnitude, color, and morphology. We present new galaxy number counts to limiting magnitudes of I=24.0 and V=25.0. We find ω(θ)\omega(\theta) to be well described by a power-law of slope -0.8. We find the amplitude of the correlation function to decrease monotonically with increasingly faint apparent magnitude. We compare with predictions utilizing redshift distributions based on deep spectroscopic observations. We conclude that simple redshift-dependent models which characterize evolution by means of the epsilon parameter inadequately describe the observations. We find a strong clustering dependence on V-I color because galaxies of extreme color lie at similar redshifts and the angular correlation functions for these samples are minimally diluted by chance projections. We then present the first attempt to investigate the redshift evolution of clustering, utilizing a population of galaxies of the same morphological type and absolute luminosity. We study the dependence of ω(θ)\omega(\theta) on redshift for Lstar early-type galaxies in the redshift range 0.2<z<0.9. Although uncertainties are large, we find the evolution in the clustering of these galaxies to be consistent with stable clustering [epsilon=0]. We find Lstar early-type galaxies to cluster slightly more strongly (rnought = 5.25\pm0.28 \hMpc assuming epsilon=0) than the local full field population. This is in good agreement with the 2dFGRS value for Lstar early-type galaxies in the local universe (abridged).Comment: 41 pages, including 12 figs, 10 tables, to appear in Ap
    corecore