25 research outputs found

    Identification of a Novel Variant in EARS2 Associated with a Severe Clinical Phenotype Expands the Clinical Spectrum of LTBL

    Get PDF
    The EARS2 nuclear gene encodes mitochondrial glutamyl-tRNA synthetase, a member of the class I family of aminoacyl-tRNA synthetases (aaRSs) that plays a crucial role in mitochondrial protein biosynthesis by catalyzing the charging of glutamate to mitochondrial tRNA(Glu). Pathogenic EARS2 variants have been associated with a rare mitochondrial disorder known as leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL). The targeted sequencing of 150 nuclear genes encoding respiratory chain complex subunits and proteins implicated in the oxidative phosphorylation (OXPHOS) function was performed. The oxygen consumption rate (OCR), and the extracellular acidification rate (ECAR), were measured. The enzymatic activities of Complexes I-V were analyzed spectrophotometrically. We describe a patient carrying two heterozygous EARS2 variants, c.376C>T (p.Gln126*) and c.670G>A (p.Gly224Ser), with infantile-onset disease and a severe clinical presentation. We demonstrate a clear defect in mitochondrial function in the patient's fibroblasts, suggesting the molecular mechanism underlying the pathogenicity of these EARS2 variants. Experimental validation using patient-derived fibroblasts allowed an accurate characterization of the disease-causing variants, and by comparing our patient's clinical presentation with that of previously reported cases, new clinical and radiological features of LTBL were identified, expanding the clinical spectrum of this disease

    LipoDDx: a mobile application for identification of rare lipodystrophy syndromes

    Get PDF
    BACKGROUND: Lipodystrophy syndromes are a group of disorders characterized by a loss of adipose tissue once other situations of nutritional deprivation or exacerbated catabolism have been ruled out. With the exception of the HIV-associated lipodystrophy, they have a very low prevalence, which together with their large phenotypic heterogeneity makes their identification difficult, even for endocrinologists and pediatricians. This leads to significant delays in diagnosis or even to misdiagnosis. Our group has developed an algorithm that identifies the more than 40 rare lipodystrophy subtypes described to date. This algorithm has been implemented in a free mobile application, LipoDDx(R). Our aim was to establish the effectiveness of LipoDDx(R). Forty clinical records of patients with a diagnosis of certainty of most lipodystrophy subtypes were analyzed, including subjects without lipodystrophy. The medical records, blinded for diagnosis, were evaluated by 13 physicians, 1 biochemist and 1 dentist. Each evaluator first gave his/her results based on his/her own criteria. Then, a second diagnosis was given using LipoDDx(R). The results were analysed based on a score table according to the complexity of each case and the prevalence of the disease. RESULTS: LipoDDx(R) provides a user-friendly environment, based on usually dichotomous questions or choice of clinical signs from drop-down menus. The final result provided by this app for a particular case can be a low/high probability of suffering a particular lipodystrophy subtype. Without using LipoDDx(R) the success rate was 17 +/- 20%, while with LipoDDx(R) the success rate was 79 +/- 20% (p < 0.01). CONCLUSIONS: LipoDDx(R) is a free app that enables the identification of subtypes of rare lipodystrophies, which in this small cohort has around 80% effectiveness, which will be of help to doctors who are not experts in this field. However, it will be necessary to analyze more cases in order to obtain a more accurate efficiency value

    Clinical characteristics of adult patients with inborn errors of metabolism in Spain: A review of 500 cases from university hospitals

    No full text
    Patients with inborn errors of metabolism (IEMs) have become an emerging and challenging group in the adult healthcare system whose needs should be known in order to implement appropriate policies and to adapt adult clinical departments. We aimed to analyze the clinical characteristics of adult patients with IEMs who attend the most important Spanish hospitals caring for these conditions. A cohort study was conducted in 500 patients, categorized by metabolic subtype according to pathophysiological classification. The most prevalent group of IEMs was amino acid disorders, with 108 (21.6%) patients diagnosed with phenylketonuria. Lysosomal storage disorders were the second group, in which 32 (6.4%) and 25 (5%) patients had Fabry disease and Gaucher disease respectively. The great clinical heterogeneity, the significant delay in diagnosis after symptom onset, the existence of some degree of physical dependence in a great number of patients, the need for a multidisciplinary and coordinated approach, and the lack of specific drug treatment are common features in this group of conditions
    corecore