10 research outputs found

    Loss of p16(INK4a) is associated with reduced patient survival in soft tissue tumours, and indicates a senescence barrier

    Get PDF
    Aims: p16(INK4a) is an important factor in carcinogenesis, and its expression is linked to oncogene-induced senescence. Very recently it was shown that upregulation and downregulation of p16 indicates a senescence barrier in the serrated route of colorectal cancer. However, in soft tissue sarcoma (STS), the senescence mechanism is still not understood. In this study, we analysed a well characterised cohort of STS for p16(INK4a) expression and correlated the results with clinicopathological parameters including survival. Methods: Tissue microarrays (TMA) of 183 soft tissue and bone tumours were analysed immunohistochemically. Furthermore, mRNA expression of p16(INK4a) was evaluated in four sarcoma cell lines, and a demethylation test was performed by treatment with 5-aza-2 \grq-deoxycytide. Results: On protein level, expression of p16(INK4a) was observed in undifferentiated pleomorphic sarcoma (UPS) in 69.1%, leiomyosarcoma in 85.7%, synovial sarcoma in 77.8%, liposarcoma in 88.9%, angiosarcoma in 60.9% and MPNST in 22.2%. Loss of p16(INK4a) was observed in high grade sarcomas and showed a significant correlation with reduced patient survival (p=0.032). On DNA level, one out of four sarcoma cell lines exhibited a methylated p16(INK4a) promoter analysed by methylation-specific PCR. p16(INK4a) mRNA and protein expression was restored after demethylation using 5-aza-2′-deoxycytide. Conclusions: Upregulation of p16(INK4a) might be associated with the induction of senescence and indicates a senescence barrier. Downregulation of p16(INK4a) is found in malignant progression, and is significantly correlated with reduced patient survival. Downregulation of p16(INK4a) may be explained by DNA-hypermethylation in sarcoma cells

    Loss of p16(INK4a) is associated with reduced patient survival in soft tissue tumours, and indicates a senescence barrier

    Get PDF
    Aims: p16(INK4a) is an important factor in carcinogenesis, and its expression is linked to oncogene-induced senescence. Very recently it was shown that upregulation and downregulation of p16 indicates a senescence barrier in the serrated route of colorectal cancer. However, in soft tissue sarcoma (STS), the senescence mechanism is still not understood. In this study, we analysed a well characterised cohort of STS for p16(INK4a) expression and correlated the results with clinicopathological parameters including survival. Methods: Tissue microarrays (TMA) of 183 soft tissue and bone tumours were analysed immunohistochemically. Furthermore, mRNA expression of p16(INK4a) was evaluated in four sarcoma cell lines, and a demethylation test was performed by treatment with 5-aza-2 \grq-deoxycytide. Results: On protein level, expression of p16(INK4a) was observed in undifferentiated pleomorphic sarcoma (UPS) in 69.1%, leiomyosarcoma in 85.7%, synovial sarcoma in 77.8%, liposarcoma in 88.9%, angiosarcoma in 60.9% and MPNST in 22.2%. Loss of p16(INK4a) was observed in high grade sarcomas and showed a significant correlation with reduced patient survival (p=0.032). On DNA level, one out of four sarcoma cell lines exhibited a methylated p16(INK4a) promoter analysed by methylation-specific PCR. p16(INK4a) mRNA and protein expression was restored after demethylation using 5-aza-2′-deoxycytide. Conclusions: Upregulation of p16(INK4a) might be associated with the induction of senescence and indicates a senescence barrier. Downregulation of p16(INK4a) is found in malignant progression, and is significantly correlated with reduced patient survival. Downregulation of p16(INK4a) may be explained by DNA-hypermethylation in sarcoma cells

    MicroRNA-34a regulates cardiac ageing and function

    No full text
    Ageing is the predominant risk factor for cardiovascular diseases and contributes to a significantly worse outcome in patients with acute myocardial infarction. MicroRNAs (miRNAs) have emerged as crucial regulators of cardiovascular function and some miRNAs have key roles in ageing. We propose that altered expression of miRNAs in the heart during ageing contributes to the age-dependent decline in cardiac function. Here we show that miR-34a is induced in the ageing heart and that in vivo silencing or genetic deletion of miR-34a reduces age-associated cardiomyocyte cell death. Moreover, miR-34a inhibition reduces cell death and fibrosis following acute myocardial infarction and improves recovery of myocardial function. Mechanistically, we identified PNUTS (also known as PPP1R10) as a novel direct miR-34a target, which reduces telomere shortening, DNA damage responses and cardiomyocyte apoptosis, and improves functional recovery after acute myocardial infarction. Together, these results identify age-induced expression of miR-34a and inhibition of its target PNUTS as a key mechanism that regulates cardiac contractile function during ageing and after acute myocardial infarction, by inducing DNA damage responses and telomere attrition

    Human Proteinpedia enables sharing of human protein data [4]

    No full text

    Correspondence. Human Proteinpedia enables sharing of human protein data

    No full text
    4 page(s
    corecore