6 research outputs found

    Quantum Hall Physics - hierarchies and CFT techniques

    Full text link
    The fractional quantum Hall effect, being one of the most studied phenomena in condensed matter physics during the past thirty years, has generated many groundbreaking new ideas and concepts. Very early on it was realized that the zoo of emerging states of matter would need to be understood in a systematic manner. The first attempts to do this, by Haldane and Halperin, set an agenda for further work which has continued to this day. Since that time the idea of hierarchies of quasiparticles condensing to form new states has been a pillar of our understanding of fractional quantum Hall physics. In the thirty years that have passed since then, a number of new directions of thought have advanced our understanding of fractional quantum Hall states, and have extended it in new and unexpected ways. Among these directions is the extensive use of topological quantum field theories and conformal field theories, the application of the ideas of composite bosons and fermions, and the study of nonabelian quantum Hall liquids. This article aims to present a comprehensive overview of this field, including the most recent developments.Comment: added section on experimental status, 59 pages+references, 3 figure

    Quantum Hall quasielectron operators in conformal field theory

    Full text link
    In the conformal field theory (CFT) approach to the quantum Hall effect, the multi-electron wave functions are expressed as correlation functions in certain rational CFTs. While this approach has led to a well-understood description of the fractionally charged quasihole excitations, the quasielectrons have turned out to be much harder to handle. In particular, forming quasielectron states requires non-local operators, in sharp contrast to quasiholes that can be created by local chiral vertex operators. In both cases, the operators are strongly constrained by general requirements of symmetry, braiding and fusion. Here we construct a quasielectron operator satisfying these demands and show that it reproduces known good quasiparticle wave functions, as well as predicts new ones. In particular we propose explicit wave functions for quasielectron excitations of the Moore-Read Pfaffian state. Further, this operator allows us to explicitly express the composite fermion wave functions in the positive Jain series in hierarchical form, thus settling a longtime controversy. We also critically discuss the status of the fractional statistics of quasiparticles in the Abelian hierarchical quantum Hall states, and argue that our construction of localized quasielectron states sheds new light on their statistics. At the technical level we introduce a generalized normal ordering, that allows us to "fuse" an electron operator with the inverse of an hole operator, and also an alternative approach to the background charge needed to neutralize CFT correlators. As a result we get a fully holomorphic CFT representation of a large set of quantum Hall wave functions.Comment: minor changes, publishe

    Quantum Hall quasielectrons - Abelian and non-Abelian

    Full text link
    The quasiparticles in Quantum Hall liquids carry fractional charge and obey fractional quantum statistics. Of particular recent interest are those with non-Abelian statistics, since their braiding properties could in principle be used for robust coding of quantum information. There is already a good theoretical understanding of quasiholes both in Abelian and non-Abelian QH states. Here we develop conformal field theory methods that allow for an equally precise description of quasielectrons, and explicitly construct two- and four-quasielectron excitations of the non-Abelian Moore-Read state.Comment: figure adde

    Hierarchy wave functions--from conformal correlators to Tao-Thouless states

    Full text link
    Laughlin's wave functions, describing the fractional quantum Hall effect at filling factors ν=1/(2k+1)\nu=1/(2k+1), can be obtained as correlation functions in conformal field theory, and recently this construction was extended to Jain's composite fermion wave functions at filling factors ν=n/(2kn+1)\nu=n/(2kn+1). Here we generalize this latter construction and present ground state wave functions for all quantum Hall hierarchy states that are obtained by successive condensation of quasielectrons (as opposed to quasiholes) in the original hierarchy construction. By considering these wave functions on a cylinder, we show that they approach the exact ground states, the Tao-Thouless states, when the cylinder becomes thin. We also present wave functions for the multi-hole states, make the connection to Wen's general classification of abelian quantum Hall fluids, and discuss whether the fractional statistics of the quasiparticles can be analytically determined. Finally we discuss to what extent our wave functions can be described in the language of composite fermions.Comment: 9 page

    Degeneracy of non-abelian quantum Hall states on the torus: domain walls and conformal field theory

    Get PDF
    We analyze the non-abelian Read-Rezayi quantum Hall states on the torus, where it is natural to employ a mapping of the many-body problem onto a one-dimensional lattice model. On the thin torus--the Tao-Thouless (TT) limit--the interacting many-body problem is exactly solvable. The Read-Rezayi states at filling ν=kkM+2\nu=\frac k {kM+2} are known to be exact ground states of a local repulsive k+1k+1-body interaction, and in the TT limit this is manifested in that all states in the ground state manifold have exactly kk particles on any kM+2kM+2 consecutive sites. For M≠0M\neq 0 the two-body correlations of these states also imply that there is no more than one particle on MM adjacent sites. The fractionally charged quasiparticles and quasiholes appear as domain walls between the ground states, and we show that the number of distinct domain wall patterns gives rise to the nontrivial degeneracies, required by the non-abelian statistics of these states. In the second part of the paper we consider the quasihole degeneracies from a conformal field theory (CFT) perspective, and show that the counting of the domain wall patterns maps one to one on the CFT counting via the fusion rules. Moreover we extend the CFT analysis to topologies of higher genus.Comment: 15 page
    corecore