23 research outputs found

    Preface

    No full text

    Gender Differences in Itch and Pain-related Sensations Provoked by Histamine, Cowhage and Capsaicin

    Get PDF
    Cowhage, capsaicin and histamine, all applied via spicules, were used to induce itch and pain-related sensations in 15 male and 15 female subjects. Sensory qualities were assessed by questionnaire; intensities and time courses of the “itching” and “burning” sensation were measured alternately, but continuously on a VAS. In addition, axon reflexes were assessed. Only histamine and capsaicin produced a clear axon reflex flare (histamine > capsaicin, male = female). The 3 types of spicules caused mixed burning and itching sensations with different time courses. In the beginning burning prevailed, in the following minutes histamine induced mostly itching, capsaicin predominantly burning, cowhage both sensory components equally. Female subjects experienced more pain-related sensations (questionnaire), and their ratings leaned more toward burning than those of males. These findings indicate that the mixed itching and burning sensations are differentially processed by both genders. No indications were found for gender specific differential processing in the primary afferents as reflected by nearly identical flare responses

    Impact factor blues

    No full text

    Cerebral Networks Linked to Itch-related Sensations Induced by Histamine and Capsaicin

    Get PDF
    This functional magnetic resonance imaging (fMRI) study explored the central nervous processing of itch induced by histamine and capsaicin, delivered via inactivated cowhage spicules, and the influence of low-dose naltrexone. Scratch bouts were delivered at regular intervals after spicule insertion in order temporarily to suppress the itch. At the end of each trial the subjects rated their itch and scratch-related sensations. Stepwise multiple regression analyses were employed for identifying cerebral networks contributing to the intensities of "itching", "burning", "stinging", "pricking" and "itch relief by scratching". In the capsaicin experiments a network for "burning" was identified, which included the posterior insula, caudate and putamen. In the histamine experiments networks for "itching" and "itch relief" were found, which included operculum, hippocampus and amygdala. Naltrexone generally reduced fMRI activation and the correlations between fMRI signal and ratings. Furthermore, scratching was significantly less pleasant under naltrexone

    Central Projection of Pain Arising from Delayed Onset Muscle Soreness (DOMS) in Human Subjects

    No full text
    Delayed onset muscle soreness (DOMS) is a subacute pain state arising 24–48 hours after a bout of unaccustomed eccentric muscle contractions. Functional magnetic resonance imaging (fMRI) was used to examine the patterns of cortical activation arising during DOMS-related pain in the quadriceps muscle of healthy volunteers evoked by either voluntary contraction or physical stimulation. The painful movement or physical stimulation of the DOMS-affected thigh disclosed widespread activation in the primary somatosensory and motor (S1, M1) cortices, stretching far beyond the corresponding areas somatotopically related to contraction or physical stimulation of the thigh; activation also included a large area within the cingulate cortex encompassing posteroanterior regions and the cingulate motor area. Pain-related activations were also found in premotor (M2) areas, bilateral in the insular cortex and the thalamic nuclei. In contrast, movement of a DOMS-affected limb led also to activation in the ipsilateral anterior cerebellum, while DOMS-related pain evoked by physical stimulation devoid of limb movement did not

    Separate Peripheral Pathways for Pruritus in Man

    No full text
    Recent findings suggest that itch produced by intradermal insertion of cowhage spicules in human is histamine independent. Neuronal mechanisms underlying nonhistaminergic itch are poorly understood. To investigate which nerve fibers mediate cowhage induced itch in man, action potentials were recorded from cutaneous C-fibers of the peroneal nerve in healthy volunteers using microneurography. Mechano-responsive and -insensitive C-nociceptors were tested for their responsiveness to cowhage spicules, histamine, and capsaicin. Cowhage spicules induced itching and activated all tested mechano-responsive C-units (24/24, but no mechano-insensitive C-fibers (0/17). Histamine also induced itch, but in contrast to cowhage, it caused lasting activation only in mechano-insensitive units (8/12). In mechano-responsive C-units, histamine caused no or only short and weak responses unrelated to the time course of itching. Capsaicin injections activated four of six mechano-responsive fibers and three of four mechano-insensitive C-fibers. Cowhage and histamine activate distinctly different nonoverlapping populations of C-fibers while inducing similar sensations of itch. We hypothesize that cowhage activates a pathway for itch that originates peripherally from superficial mechano-responsive (polymodal) C-fibers and perhaps other afferent units. It is distinct from the pathway for histamine-mediated pruritus and does not involve the histamine-sensitive mechano-insensitive fibers

    Central projection of pain arising from delayed onset muscle soreness (DOMS) in human subjects.

    Get PDF
    Delayed onset muscle soreness (DOMS) is a subacute pain state arising 24-48 hours after a bout of unaccustomed eccentric muscle contractions. Functional magnetic resonance imaging (fMRI) was used to examine the patterns of cortical activation arising during DOMS-related pain in the quadriceps muscle of healthy volunteers evoked by either voluntary contraction or physical stimulation. The painful movement or physical stimulation of the DOMS-affected thigh disclosed widespread activation in the primary somatosensory and motor (S1, M1) cortices, stretching far beyond the corresponding areas somatotopically related to contraction or physical stimulation of the thigh; activation also included a large area within the cingulate cortex encompassing posteroanterior regions and the cingulate motor area. Pain-related activations were also found in premotor (M2) areas, bilateral in the insular cortex and the thalamic nuclei. In contrast, movement of a DOMS-affected limb led also to activation in the ipsilateral anterior cerebellum, while DOMS-related pain evoked by physical stimulation devoid of limb movement did not

    Central Projection of Pain Arising from Delayed Onset Muscle Soreness (DOMS) in Human Subjects

    Get PDF
    Delayed onset muscle soreness (DOMS) is a subacute pain state arising 24–48 hours after a bout of unaccustomed eccentric muscle contractions. Functional magnetic resonance imaging (fMRI) was used to examine the patterns of cortical activation arising during DOMS-related pain in the quadriceps muscle of healthy volunteers evoked by either voluntary contraction or physical stimulation. The painful movement or physical stimulation of the DOMS-affected thigh disclosed widespread activation in the primary somatosensory and motor (S1, M1) cortices, stretching far beyond the corresponding areas somatotopically related to contraction or physical stimulation of the thigh; activation also included a large area within the cingulate cortex encompassing posteroanterior regions and the cingulate motor area. Pain-related activations were also found in premotor (M2) areas, bilateral in the insular cortex and the thalamic nuclei. In contrast, movement of a DOMS-affected limb led also to activation in the ipsilateral anterior cerebellum, while DOMS-related pain evoked by physical stimulation devoid of limb movement did not
    corecore