12 research outputs found

    A novel live-attenuated vaccine candidate for mayaro Fever.

    Get PDF
    Mayaro virus (MAYV) is an emerging, mosquito-borne alphavirus that causes a dengue-like illness in many regions of South America, and which has the potential to urbanize. Because no specific treatment or vaccine is available for MAYV infection, we capitalized on an IRES-based approach to develop a live-attenuated MAYV vaccine candidate. Testing in infant, immunocompetent as well as interferon receptor-deficient mice demonstrated a high degree of attenuation, strong induction of neutralizing antibodies, and efficacy against lethal challenge. This vaccine strain was also unable to infect mosquito cells, a major safety feature for a live vaccine derived from a mosquito-borne virus. Further preclinical development of this vaccine candidate is warranted to protect against this important emerging disease

    Regulation of NF-κB signaling by caspases and MALT1 paracaspase

    No full text
    Caspases are intracellular proteases that are best known for their function in apoptosis signaling. It has become evident that many caspases also function in other signaling pathways that propagate cell proliferation and inflammation, but studies on the inflammatory function of caspases have mainly been limited to caspase-1-mediated cytokine processing. Emerging evidence, however, indicates an important contribution of caspases as mediators or regulators of nuclear factor-κB (NF-κB) signaling, which plays a key role in inflammation and immunity. Much still needs to be learned about the mechanisms that govern the activation and regulation of NF-κB by caspases, and this review provides an update of this area. Whereas apoptosis signaling is dependent on the catalytic activity of caspases, they mainly act as scaffolding platforms for other signaling proteins in the case of NF-κB signaling. Caspase proteolytic activity, however, counteracts the pro-survival function of NF-κB by cleaving specific signaling molecules. A striking exception is the paracaspase mucosa-associated lymphoid tissue 1 (MALT1), whose adaptor and proteolytic activity are both needed to initiate a full blown NF-κB response in antigen-stimulated lymphocytes. Understanding the role of caspases and MALT1 in the regulation of NF-κB signaling is of high interest for therapeutic immunomodulation

    Programmed cell death as a defence against infection

    No full text
    Eukaryotic cells can die from physical trauma, resulting in necrosis. Alternately, they can die via programmed cell death upon stimulation of specific signalling pathways. Here we discuss the utility of four cell death pathways in innate immune defence against bacterial and viral infection: apoptosis, necroptosis, pyroptosis and NETosis. We describe the interactions that interweave different programmed cell death pathways, which create complex signalling networks that cross-guard each other in the evolutionary arms race with pathogens. Finally, we describe how the resulting cell corpses — apoptotic bodies, pore-induced intracellular traps (PITs) and neutrophil extracellular traps (NETs) — promote clearance of infection

    Infectious Encephalitis in the Neurocritical Care Unit

    No full text
    corecore