139 research outputs found
Current understanding of fibrosis in genetic cardiomyopathies
Myocardial fibrosis is the excessive deposition of extracellular matrix proteins, including collagens, in the heart. In cardiomyopathies, the formation of interstitial fibrosis and/or replacement fibrosis is almost always part of the pathological cardiac remodeling process. Different forms of cardiomyopathies show particular patterns of myocardial fibrosis that can be considered as distinctive hallmarks. Although formation of fibrosis is initially aimed to be a reparative mechanism, in the long term, on-going and excessive myocardial fibrosis may lead to arrhythmias and stiffening of the heart wall and subsequently to diastolic dysfunction. Ultimately, adverse remodeling with progressive myocardial fibrosis can lead to heart failure. Not surprisingly, the presence of fibrosis in cardiomyopathies, even when subtle, has consistently been associated with complications and adverse outcomes. In the last decade, non-invasive in vivo techniques for visualization of myocardial fibrosis have emerged, and have been increasingly used in research and in the clinic. In this review, we will describe the epidemiology, distribution, and role of myocardial fibrosis in genetic cardiomyopathies, including hypertrophic, dilated, arrhythmogenic, and non-compaction cardiomyopathy, and a few specific forms of genetic cardiomyopathies
OCP acquires FTTH player
PURPOSE OF REVIEW: In this review, we highlight the most important cellular and molecular mechanisms that contribute to cardiac inflammation and fibrosis. We also discuss the interplay between inflammation and fibrosis in various precursors of heart failure (HF) and how such mechanisms can contribute to myocardial tissue remodelling and development of HF. RECENT FINDINGS: Recently, many research articles attempt to elucidate different aspects of the interplay between inflammation and fibrosis. Cardiac inflammation and fibrosis are major pathophysiological mechanisms operating in the failing heart, regardless of HF aetiology. Currently, novel therapeutic options are available or are being developed to treat HF and these are discussed in this review. A progressive disease needs an aggressive management; however, existing therapies against HF are insufficient. There is a dynamic interplay between inflammation and fibrosis in various precursors of HF such as myocardial infarction (MI), myocarditis and hypertension, and also in HF itself. There is an urgent need to identify novel therapeutic targets and develop advanced therapeutic strategies to combat the syndrome of HF. Understanding and describing the elements of the inflammatory and fibrotic pathways are essential, and specific drugs that target these pathways need to be evaluated
Early and late effects of the DPP-4 inhibitor vildagliptin in a rat model of post-myocardial infarction heart failure
<p>Abstract</p> <p>Background</p> <p>Progressive remodeling after myocardial infarction (MI) is a leading cause of morbidity and mortality. Recently, glucagon-like peptide (GLP)-1 was shown to have cardioprotective effects, but treatment with GLP-1 is limited by its short half-life. It is rapidly degraded by the enzyme dipeptidyl peptidase-4 (DPP-4), an enzyme which inhibits GLP-1 activity. We hypothesized that the DPP-4 inhibitor vildagliptin will increase levels of GLP-1 and may exert protective effects on cardiac function after MI.</p> <p>Methods</p> <p>Sprague-Dawley rats were either subjected to coronary ligation to induce MI and left ventricular (LV) remodeling, or sham operation. Parts of the rats with an MI were pre-treated for 2 days with the DPP-4 inhibitor vildagliptin (MI-Vildagliptin immediate, MI-VI, 15 mg/kg/day). The remainder of the rats was, three weeks after coronary artery ligation, subjected to treatment with DPP-4 inhibitor vildagliptin (MI-Vildagliptin Late, MI-VL) or control (MI). At 12 weeks, echocardiography and invasive hemodynamics were measured and molecular analysis and immunohistochemistry were performed.</p> <p>Results</p> <p>Vildagliptin inhibited the DPP-4 enzymatic activity by almost 70% and increased active GLP-1 levels by about 3-fold in plasma in both treated groups (p < 0.05 vs. non-treated groups). Cardiac function (ejection fraction) was decreased in all 3 MI groups compared with Sham group (p < 0.05); treatment with vildagliptin, either early or late, did not reverse cardiac remodeling. ANP (atrial natriuretic peptide) and BNP (brain natriuretic peptide) mRNA levels were significantly increased in all 3 MI groups, but no significant reductions were observed in both vildagliptin groups. Vildagliptin also did not change cardiomyocyte size or capillary density after MI. No effects were detected on glucose level and body weight in the post-MI remodeling model.</p> <p>Conclusion</p> <p>Vildagliptin increases the active GLP-1 level via inhibition of DPP-4, but it has no substantial protective effects on cardiac function in this well established long-term post-MI cardiac remodeling model.</p
Human TPX2 is required for targeting Aurora-A kinase to the spindle
Aurora-A is a serine-threonine kinase implicated in the assembly and maintenance of the mitotic spindle. Here we show that human Aurora-A binds to TPX2, a prominent component of the spindle apparatus. TPX2 was identified by mass spectrometry as a major protein coimmunoprecipitating specifically with Aurora-A from mitotic HeLa cell extracts. Conversely, Aurora-A could be detected in TPX2 immunoprecipitates. This indicates that subpopulations of these two proteins undergo complex formation in vivo. Binding studies demonstrated that the NH2 terminus of TPX2 can directly interact with the COOH-terminal catalytic domain of Aurora-A. Although kinase activity was not required for this interaction, TPX2 was readily phosphorylated by Aurora-A. Upon siRNA-mediated elimination of TPX2 from cells, the association of Aurora-A with the spindle microtubules was abolished, although its association with spindle poles was unaffected. Conversely, depletion of Aurora-A by siRNA had no detectable influence on the localization of TPX2. We propose that human TPX2 is required for targeting Aurora-A kinase to the spindle apparatus. In turn, Aurora-A might regulate the function of TPX2 during spindle assembly
Phosphorylation by Cdk1 induces Plk1-mediated vimentin phosphorylation during mitosis
Several kinases phosphorylate vimentin, the most common intermediate filament protein, in mitosis. Aurora-B and Rho-kinase regulate vimentin filament separation through the cleavage furrow-specific vimentin phosphorylation. Cdk1 also phosphorylates vimentin from prometaphase to metaphase, but its significance has remained unknown. Here we demonstrated a direct interaction between Plk1 and vimentin-Ser55 phosphorylated by Cdk1, an event that led to Plk1 activation and further vimentin phosphorylation. Plk1 phosphorylated vimentin at ∼1 mol phosphate/mol substrate, which partly inhibited its filament forming ability, in vitro. Plk1 induced the phosphorylation of vimentin-Ser82, which was elevated from metaphase and maintained until the end of mitosis. This elevation followed the Cdk1-induced vimentin-Ser55 phosphorylation, and was impaired by Plk1 depletion. Mutational analyses revealed that Plk1-induced vimentin-Ser82 phosphorylation plays an important role in vimentin filaments segregation, coordinately with Rho-kinase and Aurora-B. Taken together, these results indicated a novel mechanism that Cdk1 regulated mitotic vimentin phosphorylation via not only a direct enzyme reaction but also Plk1 recruitment to vimentin
Deletion of DWORF does not affect cardiac function in aging and in PLN-R14del cardiomyopathy
The phospholamban (PLN) pathogenic gene variant p.Arg14del causes cardiomyopathy, which is characterized by perinuclear PLN protein clustering and can lead to severe heart failure (HF). Elevated expression of dwarf open reading frame (DWORF), a protein counteracting the function of PLN in the sarcoplasmic reticulum (SR), can delay disease progression in a PLN-R14del mouse model. Here, we evaluated whether deletion of DWORF (DWORF-/-) would have an opposite effect and accelerate agedependent disease progression in wild-type (WT) mice and mice with a pathogenic PLN-R14del allele (R14Δ/+). We show that DWORF-/- mice maintained a normal left ventricular ejection fraction (LVEF) during aging and no difference with WT control mice could be observed up to 20 mo of age. R14Δ/+ mice maintained a normal cardiac function until 12 mo of age, but at 18 mo of age, LVEF was significantly reduced as compared with WT mice. Absence of DWORF did neither accelerate the R14Δ/+- induced reduction in LVEF nor enhance the increases in gene expression of markers related to cardiac remodeling and fibrosis and did not exacerbate cardiac fibrosis caused by the R14Δ/+ mutation. Together, these results demonstrate that absence of DWORF does not accelerate or exacerbate PLN-R14del cardiomyopathy in mice harboring the pathogenic R14del allele. In addition, our data indicate that DWORF appears to be dispensable for cardiac function during aging.</p
Pharmacological myeloperoxidase (MPO) inhibition in an obese/hypertensive mouse model attenuates obesity and liver damage, but not cardiac remodeling
Lifestyle factors are important drivers of chronic diseases, including cardiovascular syndromes, with low grade inflammation as a central player. Attenuating myeloperoxidase (MPO) activity, an inflammatory enzyme associated with obesity, hypertension and heart failure, could have protective effects on multiple organs. Herein, the effects of the novel oral available MPO inhibitor AZM198 were studied in an obese/hypertensive mouse model which displays a cardiac phenotype. Eight week old male C57BL6/J mice received 16 weeks of high fat diet (HFD) combined with angiotensin II (AngII) infusion during the last 4 weeks, with low fat diet and saline infusion as control. Treated animals showed therapeutic AZM198 levels (2.1 µM), corresponding to 95% MPO inhibition. AZM198 reduced elevated circulating MPO levels in HFD/AngII mice to normal values. Independent of food intake, bodyweight increase and fat accumulation were attenuated by AZM198, alongside with reduced visceral adipose tissue (VAT) inflammation and attenuated severity of nonalcoholic steatohepatitis. The HFD/AngII perturbation caused impaired cardiac relaxation and contraction, and increased cardiac hypertrophy and fibrosis. AZM198 treatment did, however, not improve these cardiac parameters. Thus, AZM198 had positive effects on the main lipid controlling tissues in the body, namely adipose tissue and liver. This did, however, not directly result in improved cardiac function
The Plk1 Inhibitor BI 2536 Temporarily Arrests Primary Cardiac Fibroblasts in Mitosis and Generates Aneuploidy In Vitro
BI 2536 is a new anti-mitotic drug that targets polo-like kinase 1 (Plk1) and is currently under clinical development for cancer therapy. The effect of this drug on cancer cells has been extensively investigated, but information about the effects on primary dividing cells and differentiated non-dividing cells is scarce. We have investigated the effects of this drug on primary neonatal rat cardiac fibroblasts and on differentiated cardiomyocytes and explored the possibility to use this drug to enrich differentiated cell populations in vitro. BI 2536 had a profound effect on cardiac fibroblast proliferation in vitro and arrested these cells in mitosis with an IC50 of about 43 nM. Similar results were observed with primary human cells (HUVEC, IC50 = 30 nM), whereas the cancer cell line HeLa was more sensitive (IC50 of 9 nM). Further analysis revealed that prolonged mitotic arrest resulted in cell death for about 40% of cardiac fibroblasts. The remaining cells showed an interphase morphology with mostly multi- and micro-nucleated nuclei. This indicates that a significant number of primary fibroblasts are able to escape BI 2536 induced mitotic arrest and apparently become aneuploid. No effects were observed on cardiomyocytes and hypertrophic response (growth) upon endothelin-1 and phenylephrine stimulation was normal in the presence of BI 2536. This indicates that BI 2536 has no adverse effects on terminally differentiated cells and still allows proliferation independent growth induction in these cells. In conclusion, cardiomyocytes could be enriched using BI 2536, but the formation of aneuploidy in proliferating cells most likely limits this in vitro application and does not allow its use in putative cell based therapies
- …