4 research outputs found

    Study of Quark Propagator Solutions to the Dyson--Schwinger Equation in a Confining Model

    Get PDF
    We solve the Dyson--Schwinger equation for the quark propagator in a model with singular infrared behavior for the gluon propagator. We require that the solutions, easily found in configuration space, be tempered distributions and thus have Fourier transforms. This severely limits the boundary conditions that the solutions may satisify. The sign of the dimensionful parameter that characterizes the model gluon propagator can be either positive or negative. If the sign is negative, we find a unique solution. It is singular at the origin in momentum space, falls off like 1/p21/p^2 as p2→+/−∞p^2\rightarrow +/-\infty, and it is truly nonperturbative in that it is singular in the limit that the gluon--quark interaction approaches zero. If the sign of the gluon propagator coefficient is positive, we find solutions that are, in a sense that we exhibit, unconstrained linear combinations of advanced and retarded propagators. These solutions are singular at the origin in momentum space, fall off like 1/p21/p^2 asympotically, exhibit ``resonant--like" behavior at the position of the bare mass of the quark when the mass is large compared to the dimensionful interaction parameter in the gluon propagator model, and smoothly approach a linear combination of free--quark, advanced and retarded two--point functions in the limit that the interaction approaches zero. In this sense, these solutions behave in an increasingly ``particle--like" manner as the quark becomes heavy. The Feynman propagator and the Wightman function are not tempered distributions and therefore are not acceptable solutions to the Schwinger--Dyson equation in our model. On this basis we advance several arguments to show that the Fourier--transformable solutions we find are consistent with quark confinement, even though they have singularities on th

    Gauge covariant fermion propagator in quenched, chirally-symmetric quantum electrodynamics

    Full text link
    We discuss the chirally symmetric solution of the massless, quenched, Dyson-Schwinger equation for the fermion propagator in three and four dimensions. The solutions are manifestly gauge covariant. We consider a gauge covariance constraint on the fermion--gauge-boson vertex, which motivates a vertex Ansatz that both satisfies the Ward identity when the fermion self-mass is zero and ensures gauge covariance of the fermion propagator.Comment: 11 pages. REVTEX 3.0. ANL-PHY-7711-TH-9
    corecore