47 research outputs found

    A spherically symmetric and stationary universe from a weak modification of general relativity

    Full text link
    It is shown that a weak modification of general relativity, in the linearized approach, renders a spherically symmetric and stationary model of the universe. This is due to the presence of a third mode of polarization in the linearized gravity in which a "curvature" energy term is present. Such an energy can, in principle, be identified as the Dark Energy. The model can also help to a better understanding of the framework of the Einstein-Vlasov system.Comment: Accepted for publication by Europhysics Letter

    Weak-Scale Hidden Sector and Energy Transport in Fireball Models of Gamma-Ray Bursts

    Full text link
    The annihilation of pairs of very weakly interacting particles in the neibourghood of gamma-ray sources is introduced here as a plausible mechanism to overcome the baryon load problem. This way we can explain how these very high energy gamma-ray bursts can be powered at the onset of very energetic events like supernovae (collapsars) explosions or coalescences of binary neutron stars. Our approach uses the weak-scale hidden sector models in which the Higgs sector of the standard model is extended to include a gauge singlet that only interacts with the Higgs particle. These particles would be produced either during the implosion of the red supergiant star core or at the aftermath of a neutron star binary merger. The whole energetics and timescales of the relativistic blast wave, the fireball, are reproduced.Comment: 4 pp, 1 ps fig, text revised and improve
    corecore