305 research outputs found

    Silencing of the XAF1 gene by promoter hypermethylation in cancer cells and reactivation to TRAIL-sensitization by IFN-β

    Get PDF
    BACKGROUND: XIAP-associated factor 1 (XAF1) is a putative tumor suppressor that exerts its proapoptotic effects through both caspase-dependent and – independent means. Loss of XAF1 expression through promoter methylation has been implicated in the process of tumorigenesis in a variety of cancers. In this report, we investigated the role of basal xaf1 promoter methylation in xaf1 expression and assessed the responsiveness of cancer cell lines to XAF1 induction by IFN-β. METHODS: We used the conventional bisulfite DNA modification and sequencing method to determine the methylation status in the CpG sites of xaf1 promoter in glioblastoma (SF539, SF295), neuroblastoma (SK-N-AS) and cervical carcinoma (HeLa) cells. We analysed the status and incidence of basal xaf1 promoter methylation in xaf1 expression in non-treated cells as well as under a short or long exposure to IFN-β. Stable XAF1 glioblastoma knock-down cell lines were established to characterize the direct implication of XAF1 in IFN-β-mediated sensitization to TRAIL-induced cell death. RESULTS: We found a strong variability in xaf1 promoter methylation profile and responsiveness to IFN-β across the four cancer cell lines studied. At the basal level, aberrant promoter methylation was linked to xaf1 gene silencing. After a short exposure, the IFN-β-mediated reactivation of xaf1 gene expression was related to the degree of basal promoter methylation. However, in spite of continued promoter hypermethylation, we find that IFN-β induced a transient xaf1 expression, that in turn, was followed by promoter demethylation upon a prolonged exposure. Importantly, we demonstrated for the first time that IFN-β-mediated reactivation of endogenous XAF1 plays a critical role in TRAIL-induced cell death since XAF1 knock-down cell lines completely lost their IFN-β-mediated TRAIL sensitivity. CONCLUSION: Together, these results suggest that promoter demethylation is not the sole factor determining xaf1 gene induction under IFN-β treatment. Furthermore, our study provides evidence that XAF1 is a crucial interferon-stimulated gene (ISG) mediator of IFN-induced sensitization to TRAIL in cancer

    A Solvable Regime of Disorder and Interactions in Ballistic Nanostructures, Part I: Consequences for Coulomb Blockade

    Full text link
    We provide a framework for analyzing the problem of interacting electrons in a ballistic quantum dot with chaotic boundary conditions within an energy ETE_T (the Thouless energy) of the Fermi energy. Within this window we show that the interactions can be characterized by Landau Fermi liquid parameters. When gg, the dimensionless conductance of the dot, is large, we find that the disordered interacting problem can be solved in a saddle-point approximation which becomes exact as gg\to\infty (as in a large-N theory). The infinite gg theory shows a transition to a strong-coupling phase characterized by the same order parameter as in the Pomeranchuk transition in clean systems (a spontaneous interaction-induced Fermi surface distortion), but smeared and pinned by disorder. At finite gg, the two phases and critical point evolve into three regimes in the um1/gu_m-1/g plane -- weak- and strong-coupling regimes separated by crossover lines from a quantum-critical regime controlled by the quantum critical point. In the strong-coupling and quantum-critical regions, the quasiparticle acquires a width of the same order as the level spacing Δ\Delta within a few Δ\Delta's of the Fermi energy due to coupling to collective excitations. In the strong coupling regime if mm is odd, the dot will (if isolated) cross over from the orthogonal to unitary ensemble for an exponentially small external flux, or will (if strongly coupled to leads) break time-reversal symmetry spontaneously.Comment: 33 pages, 14 figures. Very minor changes. We have clarified that we are treating charge-channel instabilities in spinful systems, leaving spin-channel instabilities for future work. No substantive results are change

    Results from an extensive simultaneous broadband campaign on the underluminous active nucleus M81*: further evidence for mass-scaling accretion in black holes

    Full text link
    We present the results of a broadband simultaneous campaign on the nearby low-luminosity active galactic nucleus M81*. From February through August 2005, we observed M81* five times using the Chandra X-ray Observatory with the High-Energy Transmission Grating Spectrometer, complemented by ground-based observations with the Giant Meterwave Radio Telescope, the Very Large Array and Very Large Baseline Array, the Plateau de Bure Interferometer at IRAM, the Submillimeter Array and Lick Observatory. We discuss how the resulting spectra vary over short and longer timescales compared to previous results, especially in the X-rays where this is the first ever longer-term campaign at spatial resolution high enough to nearly isolate the nucleus (17pc). We compare the spectrum to our Galactic center weakly active nucleus Sgr A*, which has undergone similar campaigns, as well as to weakly accreting X-ray binaries in the context of outflow-dominated models. In agreement with recent results suggesting that the physics of weakly-accreting black holes scales predictably with mass, we find that the exact same model which successfully describes hard state X-ray binaries applies to M81*, with very similar physical parameters.Comment: 58 pages (preprint version), 22 figures, accepted for publication in the Astrophysical Journa

    The atm-1 gene is required for genome stability in Caenorhabditis elegans

    Get PDF
    The Ataxia-telangiectasia-mutated (ATM) gene in humans was identified as the basis of a rare autosomal disorder leading to cancer susceptibility and is now well known as an important signal transducer in response to DNA damage. An approach to understanding the conserved functions of this gene is provided by the model system, Caenorhabditis elegans. In this paper we describe the structure and loss of function phenotype of the ortholog atm-1. Using bioinformatic and molecular analysis we show that the atm-1 gene was previously misannotated. We find that the transcript is in fact a product of three gene predictions, Y48G1BL.2 (atm-1), K10E9.1, and F56C11.4 that together make up the complete coding region of ATM-1. We also characterize animals that are mutant for two available knockout alleles, gk186 and tm5027. As expected, atm-1 mutant animals are sensitive to ionizing radiation. In addition, however, atm-1 mutants also display phenotypes associated with genomic instability, including low brood size, reduced viability and sterility. We document several chromosomal fusions arising from atm-1 mutant animals. This is the first time a mutator phenotype has been described for atm-1 in C. elegans. Finally we demonstrate the use of a balancer system to screen for and capture atm-1-derived mutational events. Our study establishes C. elegans as a model for the study of ATM as a mutator potentially leading to the development of screens to identify therapeutic targets in humans

    The role of melatonin in the pathogenesis of adolescent idiopathic scoliosis (AIS)

    Get PDF
    The cause of adolescent idiopathic scoliosis (AIS) in humans remains obscure and probably multifactorial. At present, there is no proven method or test available to identify children or adolescent at risk of developing AIS or identify which of the affected individuals are at risk of progression. Reported associations are linked in pathogenesis rather than etiologic factors. Melatonin may play a role in the pathogenesis of scoliosis (neuroendocrine hypothesis), but at present, the data available cannot clearly show the role of melatonin in producing scoliosis in humans. The data regarding human melatonin levels are mixed at best, and the melatonin deficiency as a causative factor in the etiology of scoliosis cannot be supported. It will be an important issue of future research to investigate the role of melatonin in human biology, the clinical efficacy, and safety of melatonin under different pathological situations. Research is needed to better define the role of all factors in AIS development

    Discovery of DNA methylation markers in cervical cancer using relaxation ranking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To discover cancer specific DNA methylation markers, large-scale screening methods are widely used. The pharmacological unmasking expression microarray approach is an elegant method to enrich for genes that are silenced and re-expressed during functional reversal of DNA methylation upon treatment with demethylation agents. However, such experiments are performed in <it>in vitro </it>(cancer) cell lines, mostly with poor relevance when extrapolating to primary cancers. To overcome this problem, we incorporated data from primary cancer samples in the experimental design. A strategy to combine and rank data from these different data sources is essential to minimize the experimental work in the validation steps.</p> <p>Aim</p> <p>To apply a new relaxation ranking algorithm to enrich DNA methylation markers in cervical cancer.</p> <p>Results</p> <p>The application of a new sorting methodology allowed us to sort high-throughput microarray data from both cervical cancer cell lines and primary cervical cancer samples. The performance of the sorting was analyzed <it>in silico</it>. Pathway and gene ontology analysis was performed on the top-selection and gives a strong indication that the ranking methodology is able to enrich towards genes that might be methylated. Terms like regulation of progression through cell cycle, positive regulation of programmed cell death as well as organ development and embryonic development are overrepresented. Combined with the highly enriched number of imprinted and X-chromosome located genes, and increased prevalence of known methylation markers selected from cervical (the highest-ranking known gene is <it>CCNA1</it>) as well as from other cancer types, the use of the ranking algorithm seems to be powerful in enriching towards methylated genes.</p> <p>Verification of the DNA methylation state of the 10 highest-ranking genes revealed that 7/9 (78%) gene promoters showed DNA methylation in cervical carcinomas. Of these 7 genes, 3 (<it>SST</it>, <it>HTRA3 </it>and <it>NPTX1</it>) are not methylated in normal cervix tissue.</p> <p>Conclusion</p> <p>The application of this new relaxation ranking methodology allowed us to significantly enrich towards methylation genes in cancer. This enrichment is both shown <it>in silico </it>and by experimental validation, and revealed novel methylation markers as proof-of-concept that might be useful in early cancer detection in cervical scrapings.</p

    Numerical Simulation of Asymmetrically Altered Growth as Initiation Mechanism of Scoliosis

    Get PDF
    The causes of idiopathic scoliosis are still uncertain; buckling is mentioned often, but never proven. The authors hypothesize another option: unilateral postponement of growth of MM Rotatores or of ligamentum flavum and intertransverse ligament. In this paper, both buckling and the two new theories of scoliotic initiation are studied using a new finite element model that simulates the mechanical behavior of the human spine. This model was validated by the stiffness data of Panjabi et al. (J. Biomech. 9:185–192, 1976). After a small correction of the prestrain of some ligaments and the MM Rotatores the model appeared to be valid. The postponement in growth was translated in the numerical model in an asymmetrical stiffness. The spine was loaded axially and the resulting deformation was analyzed for the presence of the coupling of lateral deviation and axial rotation that is characteristic for scoliosis. Only unilateral postponement of growth of ligamentum flavum and intertransverse ligament appeared to initiate scoliosis. Buckling did not initiate scoliosis

    The impact of inflammation on bone mass in children

    Get PDF
    Bone is a dynamic tissue. Skeletal bone integrity is maintained through bone modeling and remodeling. The mechanisms underlying this bone mass regulation are complex and interrelated. An imbalance in the regulation of bone remodeling through bone resorption and bone formation results in bone loss. Chronic inflammation influences bone mass regulation. Inflammation-related bone disorders share many common mechanisms of bone loss. These mechanisms are ultimately mediated through the uncoupling of bone remodeling. Cachexia, physical inactivity, pro-inflammatory cytokines, as well as iatrogenic factors related to effects of immunosuppression are some of the common mechanisms. Recently, cytokine signaling through the central nervous system has been investigated for its potential role in bone mass dysregulation in inflammatory conditions. Growing research on the molecular mechanisms involved in inflammation-induced bone loss may lead to more selective therapeutic targeting of these pathological signaling pathways

    Wild Type and Mutant 2009 Pandemic Influenza A (H1N1) Viruses Cause More Severe Disease and Higher Mortality in Pregnant BALB/c Mice

    Get PDF
    BACKGROUND: Pregnant women infected by the pandemic influenza A (H1N1) 2009 virus had more severe disease and higher mortality but its pathogenesis is still unclear. PRINCIPAL FINDINGS: We showed that higher mortality, more severe pneumonitis, higher pulmonary viral load, lower peripheral blood T lymphocytes and antibody responses, higher levels of proinflammatory cytokines and chemokines, and worse fetal development occurred in pregnant mice than non-pregnant controls infected by either wild type (clinical isolate) or mouse-adapted mutant virus with D222G substitution in hemagglutinin. These disease-associated changes and the lower respiratory tract involvement were worse in pregnant mice challenged by mutant virus. Though human placental origin JEG-3 cell line could be infected and proinflammatory cytokines or chemokines were elevated in amniotic fluid of some mice, no placental or fetal involvement by virus were detected by culture, real-time reverse transcription polymerase chain reaction or histopathological changes. Dual immunofluorescent staining of viral nucleoprotein and type II alveolar cell marker SP-C protein suggested that the majority of infected alveolar epithelial cells were type II pneumocytes. CONCLUSION: The adverse effect of this pandemic virus on maternal and fetal outcome is largely related to the severe pulmonary disease and the indirect effect of inflammatory cytokine spillover into the systemic circulation
    corecore