6,388 research outputs found

    The Victoria Falls, a species boundary for the Zambezi Parrotfish, Cyphomyrus discorhynchus (Peters, 1852), and the resurrection of Cyphomyrus cubangoensis (Pellegrin, 1936) (Mormyridae: Teleostei)

    Get PDF
    Cyphomyrus discorhynchus occurs in the Zambezi River and in the linked systems of the Kwando and the Okavango. We collected specimens from both above and below the Victoria Falls and recorded Electric Organ Discharges. We found a marked degree of anatomical differentiation among the specimens from the Zambezi delta to the Victoria Falls that represents a subspecific, geographical cline, reflecting the great length (1400 km) and high ecological diversity of that river section (Lower and Middle Zambezi). We confirm that the populations above the Falls (i.e. Upper Zambezi, Kwando and Okavango) are differentiated from those below, possessing fewer dorsal fin rays (a median of 30–31 rather than 33–34). The waveforms of the electric organ discharge pulses have four phases and show geographic variation but were briefer for specimens from below the Falls. We resurrect Cyphomyrus cubangoensis (Pellegrin, 1936) for the Upper Zambezi/Kwando/Okavango system

    Hippopotamyrus ansorgii species complex in the Upper Zambezi River System with a description of a new species, H. szaboi (Mormyridae)

    Get PDF
    Specimens referable to Hippopotamyrus ansorgii sampled from the Upper Zambezi River System within Caprivi (Namibia) represent a complex of three species, two of which coexist in the Upper Zambezi River, and a third that inhabits a nearby river, the Kwando, with which the Zambezi has been connected during periods of flooding. All three are indistinguishable in terms of their general appearance, but differ consistently in electric organ discharges (EOD), morphology, and molecular genetic characters. All phenotypes display a monopolar, headpositive EOD pulse with specific post- or prepotentials. For H. ansorgii from the Zambezi River (HaZ), pulse duration is less than 0.5 ms (down to 0.205 ms; N = 34); for the syntopic H. szaboi sp. n., it is greater than 0.6 ms (up to 1.8 ms at 10% peak amplitude; N = 19). The parapatric phenotype of H. ansorgii from the Kwando River (HaK) has pulses shorter than 0.215 ms (down to 0.105 ms; N = 36). All three members of the species complex may be distinguished from each other by 7 − 9 anatomical characters, analysed by MANOVA. Based on 22 enzymes and proteins studied, the moderate to high Wright’s fixation index and the significant (P < 0.05) allele differentiation between EOD phenotypes provide additional evidence for incipient speciation. Pairwise analyses of the three different phenotypes showed the two parapatric species of H. ansorgii grouped together, and distinguishable from individuals of H. szaboi . Analyses of the mitochondrial cytochrome b gene revealed that all specimens which were attributed to H. szaboi form a well-supported monophyletic basal clade (bootstrap support 73% or 82%). The genetic distances (uncorrected p distances) between H. szaboi and the two species of H. ansorgii are between 0.6% and 1.7%. Within the derived H. ansorgii clade some phylogeographical differentiation can be seen for fishes from the Zambezi and Kwando Rivers, but the respective groups are not consistent or supported by significant bootstrap values. The question of which of the two parapatric morphological and EOD phenotypes of H. ansorgii recognized in the present paper represents H. ansorgii (Boulenger, 1905) cannot be resolved at present because of the paucity and unclear origin of the historical type material

    Allopatric differentiation in the Marcusenius macrolepidotus species complex in southern and eastern Africa: the resurrection of M. pongolensis and M. angolensis, and the description of two new species (Mormyridae, Teleostei)

    Get PDF
    We critically compared local populations of the bulldog fish, Marcusenius macrolepidotus (Peters 1852), from different watersheds, from the furthest south (28° South, South Africa) to the Equator in Kenya. We ascertained allopatric differentiation from topotypical M. macrolepidotus from the Lower Zambezi River (Mozambique) in morphology, electric organ discharges, and molecular genetics for: (1) samples from the Okavango and Upper Zambezi Systems (Botswana and Namibia), (2) samples from South Africa's rivers draining into the Indian Ocean, and (3) samples from the East African Tana River (Kenya). Significant genetic distances in the mitochondrial cytochrome b gene and differing ISSR-PCR profiles corroborate differentiation between the four taxa. We resurrect M. pongolensis (Fowler, 1934) for South Africa (sample 2), and M. angolensis (Boulenger, 1905) for the Quanza River/Angola. We recognize M. altisambesi sp. n. for the Upper Zambezi/Okavango specimens (sample 1), and M. devosi sp. n. for those from Kenya (sample 3)

    Tailoring a coherent control solution landscape by linear transforms of spectral phase basis

    Get PDF
    Finding an optimal phase pattern in a multidimensional solution landscape becomes easier and faster if local optima are suppressed and contour lines are tailored towards closed convex patterns. Using wideband second harmonic generation as a coherent control test case, we show that a linear combination of spectral phase basis functions can result in such improvements and also in separable phase terms, each of which can be found independently. The improved shapes are attributed to a suppressed nonlinear shear, changing the relative orientation of contour lines. The first order approximation of the process shows a simple relation between input and output phase profiles, useful for pulse shaping at ultraviolet wavelengths

    Use of induced acceleration to quantify the (de)stabilization effect of external and internal forces on postural responses

    Get PDF
    Due to the mechanical coupling between the body segments, it is impossible to see with the naked eye the causes of body movements and understand the interaction between movements of different body parts. The goal of this paper is to investigate the use of induced acceleration analysis to reveal the causes of body movements. We derive the analytical equations to calculate induced accelerations and evaluate its potential to study human postural responses to support-surface translations. We measured the kinematic and kinetic responses of a subject to sudden forward and backward translations of a moving platform. The kinematic and kinetics served as input to the induced acceleration analyses. The induced accelerations showed explicitly that the platform acceleration and deceleration contributed to the destabilization and restabilization of standing balance, respectively. Furthermore, the joint torques, coriolis and centrifugal forces caused by swinging of the arms, contributed positively to stabilization of the center of mass. It is concluded that induced acceleration analyses is a valuable tool in understanding balance responses to different kinds of perturbations and may help to identify the causes of movement in different pathologies
    corecore