36,570 research outputs found

    Multimodal One-Shot Learning of Speech and Images

    Full text link
    Imagine a robot is shown new concepts visually together with spoken tags, e.g. "milk", "eggs", "butter". After seeing one paired audio-visual example per class, it is shown a new set of unseen instances of these objects, and asked to pick the "milk". Without receiving any hard labels, could it learn to match the new continuous speech input to the correct visual instance? Although unimodal one-shot learning has been studied, where one labelled example in a single modality is given per class, this example motivates multimodal one-shot learning. Our main contribution is to formally define this task, and to propose several baseline and advanced models. We use a dataset of paired spoken and visual digits to specifically investigate recent advances in Siamese convolutional neural networks. Our best Siamese model achieves twice the accuracy of a nearest neighbour model using pixel-distance over images and dynamic time warping over speech in 11-way cross-modal matching.Comment: 5 pages, 1 figure, 3 tables; accepted to ICASSP 201

    Rapid billet loader aids extrusion of refractory metals

    Get PDF
    A combination gravity and manually powered rapid billet loader reduces the time required for transferring hot metal billets from a heating furnace to an extrusion press. Positioned between the furnace and extrusion press, this loader is a simple slide-delivery device

    Study of Staebler-Wronsky degradation effect in a Si:H based P-I-N solar cells

    Get PDF
    The objective of this study is to improve the stability and efficiency of thin solar cells with emphasis on a-Si:H devices. The research project was broken down into three main phases. The first involves designing and building a UHV glow discharge system; the second involves making good quality films and eventually efficient cells; the final phase will be analytical

    Weak-Scale Hidden Sector and Energy Transport in Fireball Models of Gamma-Ray Bursts

    Full text link
    The annihilation of pairs of very weakly interacting particles in the neibourghood of gamma-ray sources is introduced here as a plausible mechanism to overcome the baryon load problem. This way we can explain how these very high energy gamma-ray bursts can be powered at the onset of very energetic events like supernovae (collapsars) explosions or coalescences of binary neutron stars. Our approach uses the weak-scale hidden sector models in which the Higgs sector of the standard model is extended to include a gauge singlet that only interacts with the Higgs particle. These particles would be produced either during the implosion of the red supergiant star core or at the aftermath of a neutron star binary merger. The whole energetics and timescales of the relativistic blast wave, the fireball, are reproduced.Comment: 4 pp, 1 ps fig, text revised and improve

    Analysis of current density and related parameters in spinal cord stimulation

    Get PDF
    A volume conductor model of the spinal cord and surrounding anatomical structures is used to calculate current (and current density) charge per pulse, and maximum charge density per pulse at the contact surface of the electrode in the dorsal epidural space, in the dorsal columns of the spinal cord and in the dorsal roots. The effects of various contact configurations (mono-, bi-, and tripole), contact area and spacing, pulsewidth and distance between contacts and spinal cord on these electrical parameters were investigated under conditions similar to those in clinical spinal cord stimulation. At the threshold stimulus of a large dorsal column fiber, current density and charge density per pulse at the contact surface were found to be highest (1.9·105 ¿A/cm2 and 39.1 ¿C/cm2 ·p, respectively) when the contact surface was only 0.7 mm 2. When stimulating with a pulse of 500 ¿s, highest charge per pulse (0.92 ¿C/p), and the largest charge density per pulse in the dorsal columns (1.59 ¿C/cm2·p) occurred. It is concluded that of all stimulation parameters that can be selected freely, only pulsewidth affects the charge and charge density per pulse in the nervous tissue, whereas both pulsewidth and contact area strongly affect these parameters in the nonnervous tissue neighboring the electrode contact

    Unitary groups over local rings

    Full text link
    Structural properties of unitary groups over local, not necessarily commutative, rings are developed, with applications to the computation of the orders of these groups (when finite) and to the degrees of the irreducible constituents of the Weil representation of a unitary group associated to a ramified extension of finite local rings

    Initiation of non-tropical thunderstorms by solar activity

    Get PDF
    Correlative evidence accumulating since 1926 suggests that there must be some physical coupling mechanism between solar activity and thunderstorm occurrence in middle to high latitudes. Such a link may be provided by alteration of atmospheric electric parameters through the combined influence of high-energy solar protons and decreased cosmic ray intensities, both of which are associated with active solar events. The protons produce excess ionization near and above 20km, while the Forbush decreases a lowered conductivity and enhanced fair-weather atmospheric electric field below that altitude. Consequent effects ultimately lead to a charge distribution similar to that found in thunderclouds, and then other cloud physics processes take over to generate the intense electric fields required for lightning discharge
    corecore