38 research outputs found

    Acute inhibition of hepatic glucose-6-phosphatase does not affect gluconeogenesis but directs gluconeogenic flux toward glycogen in fasted rats - A pharmacological study with the chlorogenic acid derivative S4048

    No full text
    Effects of acute inhibition of glucose-6-phosphatase activity by the chlorogenic acid derivative S4048 on hepatic carbohydrate fluxes were examined in isolated rat hepatocytes and in vivo in rats. Fluxes were calculated using tracer dilution techniques and mass isotopomer distribution analysis in plasma glucose and urinary paracetamol-glucuronide after infusion of [U-(13)C]glucose, [2-(13)C]glycerol, [1-(2)H]galactose, and paracetamol. In hepatocytes, glucose-6-phosphate (Glc-6-P) content, net glycogen synthesis, and lactate production from glucose and dihydroxyacetone increased strongly in the presence of S4048 (10 microm). In livers of S4048-treated rats (0.5 mg kg(-1)min(-)); 8 h) Glc-6-P content increased strongly (+440%), and massive glycogen accumulation (+1260%) was observed in periportal areas. Total glucose production was diminished by 50%. The gluconeogenic flux to Glc-6-P was unaffected (i.e. 33.3 +/- 2.0 versus 33.2 +/- 2.9 micromol kg(-1)min(-1)in control and S4048-treated rats, respectively). Newly synthesized Glc-6-P was redistributed from glucose production (62 +/- 1 versus 38 +/- 1%; p < 0.001) to glycogen synthesis (35 +/- 5% versus 65 +/- 5%; p < 0.005) by S4048. This was associated with a strong inhibition (-82%) of the flux through glucokinase and an increase (+83%) of the flux through glycogen synthase, while the flux through glycogen phosphorylase remained unaffected. In livers from S4048-treated rats, mRNA levels of genes encoding Glc-6-P hydrolase (approximately 9-fold), Glc-6-P translocase (approximately 4-fold), glycogen synthase (approximately 7-fold) and L-type pyruvate kinase (approximately 4-fold) were increased, whereas glucokinase expression was almost abolished. In accordance with unaltered gluconeogenic flux, expression of the gene encoding phosphoenolpyruvate carboxykinase was unaffected in the S4048-treated rats. Thus, acute inhibition of glucose-6-phosphatase activity by S4048 elicited 1) a repartitioning of newly synthesized Glc-6-P from glucose production into glycogen synthesis without affecting the gluconeogenic flux to Glc-6-P and 2) a cellular response aimed at maintaining cellular Glc-6-P homeostasi

    Stimulatory pathways of the Calcium-sensing receptor on acid secretion in freshly isolated human gastric glands

    Get PDF
    Gastric acid secretion is not only stimulated via the classical known neuronal and hormonal pathways but also by the Ca(2+)-Sensing Receptor (CaSR) located at the basolateral membrane of the acid-secretory gastric parietal cell. Stimulation of CaSR with divalent cations or the potent agonist Gd(3+) leads to activation of the H(+)/K(+)-ATPase and subsequently to gastric acid secretion. Here we investigated the intracellular mechanism(s) mediating the effects of the CaSR on H(+)/K(+)-ATPase activity in freshly isolated human gastric glands. Inhibition of heterotrimeric G-proteins (G(i) and G(o)) with pertussis toxin during stimulation of the CaSR with Gd(3+) only partly reduced the observed stimulatory effect. A similar effect was observed with the PLC inhibitor U73122. The reduction of the H(+)/K(+)-ATPase activity measured after incubation of gastric glands with BAPTA-AM, a chelator of intracellular Ca(2+), showed that intracellular Ca(2+) plays an important role in the signalling cascade. TMB-8, a ER Ca(2+)store release inhibitor, prevented the stimulation of H(+)/K(+)-ATPase activity. Also verapamil, an inhibitor of L-type Ca(2+)-channels reduced stimulation suggesting that both the release of intracellular Ca(2+) from the ER as well as Ca(2+) influx into the cell are involved in CaSR-mediated H(+)/K(+)-ATPase activation. Chelerythrine, a general inhibitor of protein kinase C, and Go 6976 which selectively inhibits Ca(2+)-dependent PKC(alpha) and PKC(betaI)-isozymes completely abolished the stimulatory effect of Gd(3+). In contrast, Ro 31-8220, a selective inhibitor of the Ca(2+)-independent PKCepsilon and PKC-delta isoforms reduced the stimulatory effect of Gd(3+) only about 60 %. On the other hand, activation of PKC with DOG led to an activation of H(+)/K(+)-ATPase activity which was only about 60 % of the effect observed with Gd(3+). Incubation of the parietal cells with PD 098059 to inhibit ERK1/2 MAP-kinases showed a significant reduction of the Gd(3+) effect. Thus, in the human gastric parietal cell the CaSR is coupled to pertussis toxin sensitive heterotrimeric G-Proteins and requires calcium to enhance the activity of the proton-pump. PLC, ERK 1/2 MAP-kinases as well as Ca(2+) dependent and Ca(2+)-independent PKC isoforms are part of the down-stream signalling cascade
    corecore