157 research outputs found

    Hydrous Manganese Oxide Doped Gel Probe Sampler for Measuring In Situ Reductive Dissolution Rates. 1. Laboratory Development

    Get PDF
    Reductive dissolution of redox-sensitive minerals such as manganese (Mn) oxides in natural sediments is an important mechanism for trace element mobilization into groundwater. A gel probe sampler has been constructed to study in situ reductive dissolution of Mn oxides. The gel consists of a polyacrylamide polymer matrix doped with hydrous Mn oxide (HMO). Gel slabs are mounted into a probe, which is designed to be inserted into the sediments. The amount of Mn released from the gel by reductive dissolution is determined by comparing the amount of Mn initially embedded into the gel with the amount remaining in the gel after exposure to conditions in the sediments or, in laboratory studies, to reducing agents. In this laboratory study, the performance of the gel probes was examined using the model reductant ascorbate and the Mn-reducing bacteria Shewanella oneidensis strain MR-1. In addition, a 1-D model was used to relate the reaction rates observed for HMO embedded in gels to those for HMO in suspension. One limitation of the HMO-doped gels for assessing microbial reduction rates is that the gels prevent direct contact between the microbes and the HMO and hence preclude enzymatic reduction at the cell surface. Nonetheless, the HMO-doped gel probes offer the possibility to establish a lower bound for Mn-reduction capacity in sediments

    Natural attenuation of arsenic by sediment sorption and oxidation

    Get PDF
    Arsenic sorption onto aquifer sediments was investigated in anaerobic laboratory batch and column uptake experiments and characterized by As, Fe, and Mn X-ray absorption spectroscopy (XAS) to estimate the extent and mechanism of abiotic sorption and oxidation of As(III). Batch experiments at pH 6 showed that the amount of As(III) or As(V) sorption from synthetic background porewater to sediments was similar as a function of total As concentration, but slightly more As(V) was sorbed than As(III) with increasing As concentrations. Column experiments with As(III) solutions in the absence and presence of dissolved Fe^2+ showed more As uptake in the presence of Fe but also more Fe desorption during flushout with As-free solutions such that net As uptake was similar to, or less than that of, the Fe-free experiment. Fits to bulk Fe X-ray absorption near-edge spectroscopy (XANES) spectra showed no change between unreacted and reacted sediments. Manganese XANES revealed small increases in absorption in the spectral region associated with Mn(II) after reaction, indicating sediment Mn reduction. However, XANES spectra showed that Mn is not present as Mn^(IV)O_2(s) but is probably substituted into other sediment minerals as a mixture of Mn(II,III). Quantitative analyses of As XANES spectra, which indicated mixtures of As(III) and As(V) after reaction with As(III) solutions, were used to estimate a fraction of As(V) in excess of native As(V) in the sediment (0.2 mmol kg^−1) that corresponds to sorbed As(III) oxidized to As(V). The spectroscopic and solution data indicate that the aquifer sediments have a limited abiotic capacity to oxidize As(III), which did not exceed 30% of the total amount of As sorbed and was estimated in the range of 0.025−0.4 mmol kg^−1 sediment. In the presence of dissolved Fe^2+, the precipitation of Fe(III) hydrous oxide phases will be an effective mechanism for As scavenging only if there exists sufficient dissolved oxygen in groundwater to oxidize Fe. Once the aqueous oxidative capacity is exhausted, dissolved Fe^2+ may compete with As(III) for the limited abiotic oxidation supplied by sediment Mn-bearing phases

    A Gel Probe Equilibrium Sampler for Measuring Arsenic Porewater Profiles and Sorption Gradients in Sediments: I. Laboratory Development

    Get PDF
    A gel probe equilibrium sampler has been developed to study arsenic (As) geochemistry and sorption behavior in sediment porewater. The gels consist of a hydrated polyacrylamide polymer, which has a 92% water content. Two types of gels were used in this study. Undoped (clear) gels were used to measure concentrations of As and other elements in sediment porewater. The polyacrylamide gel was also doped with hydrous ferric oxide (HFO), an amorphous iron (Fe) oxyhydroxide. When deployed in the field, HFO-doped gels introduce a fresh sorbent into the subsurface thus allowing assessment of in situ sorption. In this study, clear and HFO-doped gels were tested under laboratory conditions to constrain the gel behavior prior to field deployment. Both types of gels were allowed to equilibrate with solutions of varying composition and re-equilibrated in acid for analysis. Clear gels accurately measured solution concentrations (±1%), and As was completely recovered from HFO-doped gels (±4%). Arsenic speciation was determined in clear gels through chromatographic separation of the re-equilibrated solution. For comparison to speciation in solution, mixtures of As(III) and As(V) adsorbed on HFO embedded in gel were measured in situ using X-ray absorption spectroscopy (XAS). Sorption densities for As(III) and As(V) on HFO embedded in gel were obtained from sorption isotherms at pH 7.1. When As and phosphate were simultaneously equilibrated (in up to 50-fold excess of As) with HFO-doped gels, phosphate inhibited As sorption by up to 85% and had a stronger inhibitory effect on As(V) than As(III). Natural organic matter (>200 ppm) decreased As adsorption by up to 50%, and had similar effects on As(V) and As(III). The laboratory results provide a basis for interpreting results obtained by deploying the gel probe in the field and elucidating the mechanisms controlling As partitioning between solid and dissolved phases in the environment

    TiO_2-Photocatalyzed As(III) Oxidation in a Fixed-Bed, Flow-Through Reactor

    Get PDF
    Compliance with the U.S. drinking water standard for arsenic (As) of 10 μg L^(-1) is required in January 2006. This will necessitate implementation of treatment technologies for As removal by thousands of water suppliers. Although a variety of such technologies is available, most require preoxidation of As(III) to As(V) for efficient performance. Previous batch studies with illuminated TiO_2 slurries have demonstrated that TiO_2-photocatalyzed As(III) oxidation occurs rapidly. This study examined reaction efficiency in a flow-through, fixed-bed reactor that provides a better model for treatment in practice. Glass beads were coated with mixed P25/sol gel TiO_2 and employed in an upflow reactor irradiated from above. The reactor residence time, influent As(III) concentration, number of TiO_2 coatings on the beads, solution matrix, and light source were varied to characterize this reaction and determine its feasibility for water treatment. Repeated usage of the same beads in multiple experiments or extended use was found to affect effluent As(V) concentrations but not the steady-state effluent As(III) concentration, which suggests that As(III) oxidation at the TiO_2 surface undergoes dynamic sorption equilibration. Catalyst poisoning was not observed either from As(V) or from competitively adsorbing anions, although the higher steady-state effluent As(III) concentrations in synthetic groundwater compared to 5 mM NaNO_3 indicated that competitive sorbates in the matrix partially hinder the reaction. A reactive transport model with rate constants proportional to incident light at each bead layer fit the experimental data well despite simplifying assumptions. TiO_2-photocatalyzed oxidation of As(III) was also effective under natural sunlight. Limitations to the efficiency of As(III) oxidation in the fixed-bed reactor were attributable to constraints of the reactor geometry, which could be overcome by improved design. The fixed-bed TiO_2 reactor offers an environmentally benign method for As(III) oxidation

    Hydrous Manganese Oxide Doped Gel Probe Sampler for Measuring In Situ Reductive Dissolution Rates. 2. Field Deployment

    Get PDF
    In situ rates of reductive dissolution in submerged shoreline sediments at Lake Tegel (Berlin, Germany) were measured with a novel hydrous manganese (Mn) oxide-doped gel probe sampler in concert with equilibrium gel probe and sequential extraction measurements. Rates were low in the top 8 cm, then showed a peak from 8 to 14 cm, with a maximum at 12 cm depth. This rate corresponded with a peak in dissolved porewater iron (Fe) at 11 cm depth. Below 14 cm, the reductive dissolution rate reached an intermediate steady value. Lower rates at depth corresponded with increases in operationally defined fractions of carbonate-bound and organic- and sulfide-bound Mn and Fe as detected by sequential extraction. Observed rates of reductive dissolution, which reflect a capacity for Mn reduction rather than actual rates under ambient conditions, appear to correlate with porewater chemistry and sequential extraction fractions as expected in early sediment diagenesis, and are consistent with previous measurements of in situ reductive dissolution rates. Significant downward advection in this bank filtration setting depletes the Mn and Fe oxides in the sediments and enhances the transport of dissolved Fe and Mn into the infiltrating water

    Women as leaders in academic institutions: personal experience and narrative literature review

    Get PDF
    For the last 12 years, I have had the pleasure and privilege to serve as the Director of the Swiss Federal Institute of Aquatic Science and Technology (Eawag) and as a professor at the Swiss Federal Institutes of Technology (ETH) Zurich and Lausanne (EPFL). My affiliations have afforded me a rare opportunity to observe the structure and governance of academic institutions and to reflect on my own experience in institutional leadership. I have attempted to place my experience in the context of the literature on leadership, particularly that relating to women and academia. On the basis of my experience and reading, I make some recommendations for women faculty, for women in positions of institutional leadership in academia, and for academic institutions. I am deeply convinced that greater participation by women (and members of other under-represented groups) in institutional leadership is needed if academia is to make a meaningful contribution to addressing the huge challenges that face humanity

    Oxidative Dissolution of Chromium(III) Hydroxide at pH 9, 3, and 2 with Product Inhibition at pH 2

    Get PDF
    Hexavalent chromium, Cr(VI), can be immobilized under neutral to alkaline conditions by reduction to Cr(III); similarly, the mobility of naturally occurring Cr in soils and sediments can be limited by its occurrence in the +III oxidation state. Conversely, the oxidation of Cr(III) to Cr(VI) increases both its toxicity and often its mobility. Dissolution of Cr(OH)_(3(s)) in 0.01 M NaNO_3 suspensions was examined in batch experiments in the presence and absence of the strong oxidant sodium hypochlorite (NaOCl). Dissolution of Cr(OH)_(3(s)) (1.0 g/L) was accelerated in the presence of excess strong oxidant (20 mM) at pH 9 by a factor of ca. 200 and to a lesser extent at pH 2 and 3. Linear kinetics of oxidative dissolution was observed at pH 9 and 3. In contrast, the rate of Cr release at pH 2 decreased rapidly with time, and within 2.5 h, the dissolution reaction was completely inhibited. Under oxidizing conditions, Cr released into solution is expected to be present as Cr(VI), which sorbs strongly to Cr(OH)_(3(s)) at low pH. Cr(VI) sorption followed a Langmuir isotherm and reached maximum sorption densities of 308 ± 8 and 271 ± 10 μmol/g at pH 3 and 2, respectively. However, sorption of Cr(VI) (putatively formed during oxidative dissolution) cannot explain the observed inhibition of the reaction because (1) sorption occurs at both pH 2 and 3 but inhibition only at pH 2 and (2) preequilibration of Cr(OH)_(3(s)) with Cr(VI) did not affect the rate of dissolution observed upon the addition of the oxidant. Thus, we hypothesize that the inhibition of (net) oxidative dissolution at pH 2 may be the result of secondary precipitation of a chromic hydroxy chromate phase
    • …
    corecore