6,337 research outputs found

    Steady-state differential calorimeter measures gamma heating in reactor

    Get PDF
    Steady-state differential calorimeter, which displays good accuracy and reproducibility of results, is used to measure gamma heating in a reactor environment. The calorimeter has a long life expectancy since it is virtually unharmed by the reactor environment

    Data-driven Design of Engineering Processes with COREPROModeler

    Get PDF
    Enterprises increasingly demand IT support for the coordination of their engineering processes, which often consist of hundreds up to thousands of sub-processes. From a technical viewpoint, these sub-processes have to be concurrently executed and synchronized considering numerous interdependencies. So far, this coordination has mainly been accomplished manually, which has resulted in errors and inconsistencies. In order to deal with this problem, we have to better understand the interdependencies between the subprocesses to be coordinated. In particular, we can benefit from the fact that sub-processes are often correlated to the assembly of a product (represented by a product data structure). This information can be utilized for the modeling and execution of so-called data-driven process structures. In this paper, we present the COREPRO demonstrator that supports the data-driven modeling of these process structures. The approach explicitly establishes a close linkage between product data structures and engineering processes

    Age spreads in star forming regions?

    Full text link
    Rotation periods and projected equatorial velocities of pre-main-sequence (PMS) stars in star forming regions can be combined to give projected stellar radii. Assuming random axial orientation, a Monte-Carlo model is used to illustrate that distributions of projected stellar radii are very sensitive to ages and age dispersions between 1 and 10 Myr which, unlike age estimates from conventional Hertzsprung-Russell diagrams, are relatively immune to uncertainties due to extinction, variability, distance etc. Application of the technique to the Orion Nebula cluster reveals radius spreads of a factor of 2--3 (FWHM) at a given effective temperature. Modelling this dispersion as an age spread suggests that PMS stars in the ONC have an age range larger than the mean cluster age, that could be reasonably described by the age distribution deduced from the Hertzsprung-Russell diagram. These radius/age spreads are certainly large enough to invalidate the assumption of coevality when considering the evolution of PMS properties (rotation, disks etc.) from one young cluster to another.Comment: To appear in "The Ages of Stars", E.E. Mamajek, D.R. Soderblom, R.F.G. Wyse (eds.), IAU Symposium 258, CU

    Observations of pre-stellar cores

    Full text link
    Our understanding of the physical and chemical structure of pre-stellar cores, the simplest star-forming sites, has significantly improved since the last IAU Symposium on Astrochemistry (South Korea, 1999). Research done over these years has revealed that major molecular species like CO and CS systematically deplete onto dust grains at the interior of pre-stellar cores, while species like N2H+ and NH3 survive in the gas phase and can usually be detected towards the core centers. Such a selective behaviour of molecular species gives rise to a differentiated (onion-like) chemical composition, and manifests itself in molecular maps as a dichotomy between centrally peaked and ring-shaped distributions. From the point of view of star-formation studies, the identification of molecular inhomogeneities in cores helps to resolve past discrepancies between observations made using different tracers, and brings the possibility of self-consistent modelling of the core internal structure. Here I present recent work on determining the physical and chemical structure of two pre-stellar cores, L1498 and L1517B, using observations in a large number of molecules and Monte Carlo radiative transfer analysis. These two cores are typical examples of the pre-stellar core population, and their chemical composition is characterized by the presence of large freeze out holes in most molecular species. In contrast with these chemically processed objects, a new population of chemically young cores has started to emerge. The characteristics of its most extreme representative, L1521E, are briefly reviewed.Comment: 10 pages, 5 figures. To appear in IAU 231 conf. proc. "Astrochemistry: Recent Successes and Current Challenges," eds. D.C. Lis, G.A. Blake, and E. Herbs

    Boundary states, matrix factorisations and correlation functions for the E-models

    Get PDF
    The open string spectra of the B-type D-branes of the N=2 E-models are calculated. Using these results we match the boundary states to the matrix factorisations of the corresponding Landau-Ginzburg models. The identification allows us to calculate specific terms in the effective brane superpotential of E_6 using conformal field theory methods, thereby enabling us to test results recently obtained in this context.Comment: 20 pages, no figure

    A vanishing theorem for operators in Fock space

    Full text link
    We consider the bosonic Fock space over the Hilbert space of transversal vector fields in three dimensions. This space carries a canonical representation of the group of rotations. For a certain class of operators in Fock space we show that rotation invariance implies the absence of terms which either create or annihilate only a single particle. We outline an application of this result in an operator theoretic renormalization analysis of Hamilton operators, which occur in non-relativistic qed.Comment: 14 page

    Effective superpotentials for B-branes in Landau-Ginzburg models

    Get PDF
    We compute the partition function for the topological Landau-Ginzburg B-model on the disk. This is done by treating the worldsheet superpotential perturbatively. We argue that this partition function as a function of bulk and boundary perturbations may be identified with the effective D-brane superpotential in the target spacetime. We point out the relationship of this approach to matrix factorizations. Using these methods, we prove a conjecture for the effective superpotential of Herbst, Lazaroiu and Lerche for the A-type minimal models. We also consider the Landau-Ginzburg theory of the cubic torus where we show that the effective superpotential, given by the partition function, is consistent with the one obtained by summing up disk instantons in the mirror A-model. This is done by explicitly constructing the open-string mirror map.Comment: 57p, 7 figs, harvma
    corecore