34 research outputs found

    Localization and traces in open-closed topological Landau-Ginzburg models

    Full text link
    We reconsider the issue of localization in open-closed B-twisted Landau-Ginzburg models with arbitrary Calabi-Yau target. Through careful analsysis of zero-mode reduction, we show that the closed model allows for a one-parameter family of localization pictures, which generalize the standard residue representation. The parameter λ\lambda which indexes these pictures measures the area of worldsheets with S2S^2 topology, with the residue representation obtained in the limit of small area. In the boundary sector, we find a double family of such pictures, depending on parameters λ\lambda and μ\mu which measure the area and boundary length of worldsheets with disk topology. We show that setting μ=0\mu=0 and varying λ\lambda interpolates between the localization picture of the B-model with a noncompact target space and a certain residue representation proposed recently. This gives a complete derivation of the boundary residue formula, starting from the explicit construction of the boundary coupling. We also show that the various localization pictures are related by a semigroup of homotopy equivalences.Comment: 36 page

    A retrospective review of fatal electrocution cases at Tygerberg Forensic Pathology Services, Cape Town, South Africa, over the 5-year period 1 January 2008 - 31 December 2012

    Get PDF
    Background. Electrocution as a cause of death has been discussed extensively in the international literature. However, research on this topic in South Africa (SA) is scarce.Objectives. To address the need for further research in this field and emphasise the necessity for preventive measures by determining the demographic and pathological profile of fatal electrocution cases seen in the Tygerberg Forensic Pathology Services, Western Cape Province, SA.Methods. The study was a retrospective and descriptive case series of all the cases of death secondary to electrocution referred to the study facility from 1 January 2008 to 31 December 2012.Results. A total of 39 cases were included. Ten victims (25.6%) were aged <13 years. The geographical area most affected by electrocution deaths was the informal settlement Khayelitsha (56.4% of cases). The primary injuries described were mainly burn wounds (34 cases, 87.2%) and abrasions (4 cases, 10.3%). Most injuries were to the upper limbs. Unfortunately, the results pertaining specifically to the pathology of electrical burn wounds were inconclusive.Conclusions. In view of discrepancies found in the reporting of electrical burn wounds, a standardised system for classifying these wounds is suggested. Although electrocution-related mortality is not a leading cause of death in high-prevalence areas, awareness should be raised

    Boundary states, matrix factorisations and correlation functions for the E-models

    Get PDF
    The open string spectra of the B-type D-branes of the N=2 E-models are calculated. Using these results we match the boundary states to the matrix factorisations of the corresponding Landau-Ginzburg models. The identification allows us to calculate specific terms in the effective brane superpotential of E_6 using conformal field theory methods, thereby enabling us to test results recently obtained in this context.Comment: 20 pages, no figure

    Graded D-branes and skew-categories

    Full text link
    I describe extended gradings of open topological field theories in two dimensions in terms of skew categories, proving a result which alows one to translate between the formalism of graded open 2d TFTs and equivariant cyclic categories. As an application of this formalism, I describe the open 2d TFT of graded D-branes in Landau-Ginzburg models in terms of an equivariant cyclic structure on the triangulated category of `graded matrix factorizations' introduced by Orlov. This leads to a specific conjecture for the Serre functor on the latter, which generalizes results known from the minimal and Calabi-Yau cases. I also give a description of the open 2d TFT of such models which manifestly displays the full grading induced by the vector-axial R-symmetry group.Comment: 37 page

    Triangle-generation in topological D-brane categories

    Full text link
    Tachyon condensation in topological Landau-Ginzburg models can generally be studied using methods of commutative algebra and properties of triangulated categories. The efficiency of this approach is demonstrated by explicitly proving that every D-brane system in all minimal models of type ADE can be generated from only one or two fundamental branes.Comment: 34 page

    Effective superpotentials for B-branes in Landau-Ginzburg models

    Get PDF
    We compute the partition function for the topological Landau-Ginzburg B-model on the disk. This is done by treating the worldsheet superpotential perturbatively. We argue that this partition function as a function of bulk and boundary perturbations may be identified with the effective D-brane superpotential in the target spacetime. We point out the relationship of this approach to matrix factorizations. Using these methods, we prove a conjecture for the effective superpotential of Herbst, Lazaroiu and Lerche for the A-type minimal models. We also consider the Landau-Ginzburg theory of the cubic torus where we show that the effective superpotential, given by the partition function, is consistent with the one obtained by summing up disk instantons in the mirror A-model. This is done by explicitly constructing the open-string mirror map.Comment: 57p, 7 figs, harvma

    Calculations for Mirror Symmetry with D-branes

    Full text link
    We study normal functions capturing D-brane superpotentials on several one- and two-parameter Calabi-Yau hypersurfaces and complete intersections in weighted projective space. We calculate in the B-model and interpret the results using mirror symmetry in the large volume regime, albeit without identifying the precise A-model geometry in all cases. We identify new classes of extensions of Picard-Fuchs equations, as well as a novel type of topology changing phase transition involving quantum D-branes. A 4-d domain wall which is obtained in one region of closed string moduli space from wrapping a four-chain interpolating between two Lagrangian submanifolds is, for other values of the parameters, represented by a disk ending on a single Lagrangian.Comment: 42 page

    D-branes in Toroidal Orbifolds and Mirror Symmetry

    Full text link
    We study D-branes extended in T^2/Z_4 using the mirror description as a tensor product of minimal models. We describe branes in the mirror both as boundary states in minimal models and as matrix factorizations in the corresponding Landau-Ginzburg model. We isolate a minimal set of branes and give a geometric interpretation of these as D1-branes constrained to the orbifold fixed points. This picture is supported both by spacetime arguments and by the explicit construction of the boundary states, adapting the known results for rational boundary states in the minimal models. Similar techniques apply to a larger class of toroidal orbifolds.Comment: 30 pages, 2 figure

    D-brane Categories for Orientifolds -- The Landau-Ginzburg Case

    Get PDF
    We construct and classify categories of D-branes in orientifolds based on Landau-Ginzburg models and their orbifolds. Consistency of the worldsheet parity action on the matrix factorizations plays the key role. This provides all the requisite data for an orientifold construction after embedding in string theory. One of our main results is a computation of topological field theory correlators on unoriented worldsheets, generalizing the formulas of Vafa and Kapustin-Li for oriented worldsheets, as well as the extension of these results to orbifolds. We also find a doubling of Knoerrer periodicity in the orientifold context.Comment: 45 pages, 6 figure

    D-brane superpotentials and RG flows on the quintic

    Full text link
    The behaviour of D2-branes on the quintic under complex structure deformations is analysed by combining Landau-Ginzburg techniques with methods from conformal field theory. It is shown that the boundary renormalisation group flow induced by the bulk deformations is realised as a gradient flow of the effective space time superpotential which is calculated explicitly to all orders in the boundary coupling constant.Comment: 24 pages, 1 figure, v2:Typo in (3.14) correcte
    corecore