109 research outputs found

    Quantitative Analysis of Lipid Droplet Fusion: Inefficient Steady State Fusion but Rapid Stimulation by Chemical Fusogens

    Get PDF
    Lipid droplets (LDs) are dynamic cytoplasmic organelles containing neutral lipids and bounded by a phospholipid monolayer. Previous studies have suggested that LDs can undergo constitutive homotypic fusion, a process linked to the inhibitory effects of fatty acids on glucose transporter trafficking. Using strict quantitative criteria for LD fusion together with refined light microscopic methods and real-time analysis, we now show that LDs in diverse cell types show low constitutive fusogenic activity under normal growth conditions. To investigate the possible modulation of LD fusion, we screened for agents that can trigger fusion. A number of pharmacological agents caused homotypic fusion of lipid droplets in a variety of cell types. This provided a novel cell system to study rapid regulated fusion between homotypic phospholipid monolayers. LD fusion involved an initial step in which the two adjacent membranes became continuous (<10 s), followed by the slower merging (100 s) of the neutral lipid cores to produce a single spherical LD. These fusion events were accompanied by changes to the LD surface organization. Measurements of LDs undergoing homotypic fusion showed that fused LDs maintained their initial volume, with a corresponding decrease in surface area suggesting rapid removal of membrane from the fused LD. This study provides estimates for the level of constitutive LD fusion in cells and questions the role of LD fusion in vivo. In addition, it highlights the extent of LD restructuring which occurs when homotypic LD fusion is triggered in a variety of cell types

    Uniform Selection as a Primary Force Reducing Population Genetic Differentiation of Cavitation Resistance across a Species Range

    Get PDF
    Background: Cavitation resistance to water stress-induced embolism determines plant survival during drought. This adaptive trait has been described as highly variable in a wide range of tree species, but little is known about the extent of genetic and phenotypic variability within species. This information is essential to our understanding of the evolutionary forces that have shaped this trait, and for evaluation of its inclusion in breeding programs. Methodology: We assessed cavitation resistance (P 50), growth and carbon isotope composition in six Pinus pinaster populations in a provenance and progeny trial. We estimated the heritability of cavitation resistance and compared the distribution of neutral markers (FST) and quantitative genetic differentiation (QST), for retrospective identification of the evolutionary forces acting on these traits. Results/Discussion: In contrast to growth and carbon isotope composition, no population differentiation was found for cavitation resistance. Heritability was higher than for the other traits, with a low additive genetic variance (h 2 ns = 0.4360.18, CVA = 4.4%). QST was significantly lower than FST, indicating uniform selection for P50, rather than genetic drift. Putativ

    The Neuronal Correlates of Digits Backward Are Revealed by Voxel-Based Morphometry and Resting-State Functional Connectivity Analyses

    Get PDF
    Digits backward (DB) is a widely used neuropsychological measure that is believed to be a simple and effective index of the capacity of the verbal working memory. However, its neural correlates remain elusive. The aim of this study is to investigate the neural correlates of DB in 299 healthy young adults by combining voxel-based morphometry (VBM) and resting-state functional connectivity (rsFC) analyses. The VBM analysis showed positive correlations between the DB scores and the gray matter volumes in the right anterior superior temporal gyrus (STG), the right posterior STG, the left inferior frontal gyrus and the left Rolandic operculum, which are four critical areas in the auditory phonological loop of the verbal working memory. Voxel-based correlation analysis was then performed between the positive rsFCs of these four clusters and the DB scores. We found that the DB scores were positively correlated with the rsFCs within the salience network (SN), that is, between the right anterior STG, the dorsal anterior cingulate cortex and the right fronto-insular cortex. We also found that the DB scores were negatively correlated with the rsFC within an anti-correlation network of the SN, between the right posterior STG and the left posterior insula. Our findings suggest that DB performance is related to the structural and functional organizations of the brain areas that are involved in the auditory phonological loop and the SN

    Biotechnological Perspective of Reactive Oxygen Species (ROS)-Mediated Stress Tolerance in Plants

    Get PDF
    All environmental cues lead to develop secondary stress conditions like osmotic and oxidative stress conditions that reduces average crop yields by more than 50% every year. The univalent reduction of molecular oxygen (O2) in metabolic reactions consequently produces superoxide anions (O2•−) and other reactive oxygen species (ROS) ubiquitously in all compartments of the cell that disturbs redox potential and causes threat to cellular organelles. The production of ROS further increases under stress conditions and especially in combination with high light intensity. Plants have evolved different strategies to minimize the accumulation of excess ROS like avoidance mechanisms such as physiological adaptation, efficient photosystems such as C4 or CAM metabolism and scavenging mechanisms through production of antioxidants and antioxidative enzymes. Ascorbate-glutathione pathway plays an important role in detoxifying excess ROS in plant cells, which includes superoxide dismutase (SOD) and ascorbate peroxidase (APX) in detoxifying O2•−radical and hydrogen peroxide (H2O2) respectively, monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) involved in recycling of reduced substrates such as ascorbate and glutathione. Efficient ROS management is one of the strategies used by tolerant plants to survive and perform cellular activities under stress conditions. The present chapter describes different sites of ROS generation and and their consequences under abiotic stress conditions and also described the approaches to overcome oxidative stress through genomics and genetic engineering

    Tomato (Solanum lycopersicum L.) in the service of biotechnology

    Full text link

    Neurobiology of apathy in Alzheimer's disease

    Full text link

    X-ray diffraction analysis of cytochrome b5 reconstituted in egg phosphatidylcholine vesicles.

    Get PDF
    Cytochrome b5 was reconstituted asymmetrically into large unilamellar egg phosphatidylcholine vesicles. Asymmetry was preserved after sedimentation and partial dehydration to form oriented stacks of membranes. The periodicity of the centrosymmetric unit cell ranged between 145 and 175 A, depending upon the water content of the oriented multilayer. X-ray diffraction data were collected to a resolution of 12 A and phase factors were unambiguously assigned by a swelling analysis to a resolution of 15 A. The lower-resolution profile structures clearly showed a highly asymmetric single membrane containing the heme peptide segment of the cytochrome on one side of the membrane bilayer. The higher-resolution data were also analyzed and profile structures were compared with various models for the distribution of cytochrome b5 nonpolar peptide within the membrane bilayer region. The data favor an asymmetric distribution of protein mass within the membrane bilayer

    Partitioning and location of Bay K 8644, 1,4-dihydropyridine calcium channel agonist, in model and biological membranes.

    Get PDF
    Several lines of evidence suggest that nonspecific drug interaction with the lipid bilayer plays an important role in subsequent recognition and binding to specific receptor sites in the membrane. The interaction of Bay K 8644, a 1,4-dihydropyridine (DHP) calcium channel agonist, with model and biological membranes was examined at the molecular level using small angle x-ray diffraction. Nonspecific drug partitioning into the membrane was examined by radiochemical assay. Nonspecific binding characteristics of [3H] Bay K 8644 were determined in both dipalmitoyl phosphatidylcholine (DPPC) vesicles above and below their thermal phase transition (Tm) and rabbit skeletal muscle light sarcoplasmic reticulum (LSR). In DPPC, the partition coefficient, Kp, was 14,000 above the Tm (55 degrees C) versus 160 in the gel phase (2 degrees C). The Kp determined in LSR membranes was 10,700. These values for both DPPC and LSR membranes can be compared with Kp = 290 in the traditional octanol/buffer system. Using small-angle x-ray diffraction, the equilibrium position of the electron-dense trifluoromethyl group of Bay K 8644 in DPPC (above Tm) and purified cardiac sarcolemmal (CSL) lipid bilayers was determined to be consistently located within the region of the first few methylene segments of the fatty acyl chains of these membranes. This position is similar to that observed for the DHP calcium channel antagonists nimodipine and Bay P 8857. We suggest this particular membrane location defines a region of local drug concentration and plane for lateral diffusion to a common receptor site. Below the DPPC membrane Tm, Bay K 8644 was shown to be excluded from this energetically favored position into the interbilayer water space. Heating the DPPC bilayer above the Tm (55 degrees C) showed that this exclusion was reversible and indicates that drug-membrane interaction is dependent on the bilayer physical state. The absence of any specific protein binding sites in these systems allows us to ascertain the potentially important role that the bulk lipid phase may play in the molecular mechanism of DHP binding to the specific receptor site associated with the calcium channel

    Molecular basis for the inhibition of 1,4-dihydropyridine calcium channel drugs binding to their receptors by a nonspecific site interaction mechanism.

    Get PDF
    The "membrane bilayer" pathway (Rhodes, D. G., J. G. Sarmiento, and L. G. Herbette. 1985. Mol. Pharmacol. 27:612-623.) for 1,4-dihydropyridine calcium channel drug (DHP) binding to receptor sites in cardiac sarcolemmal membranes has been extended to include the interaction of amphiphiles within the lipid bilayer. These studies focused on the ability of the Class III antiarrhythmic agents bretylium and clofilium to nonspecifically inhibit DHP-receptor binding in canine cardiac sarcolemma. Clofilium was found to inhibit nimodipine binding with an inhibition constant of approximately 5 microM, whereas bretylium had no effect on nimodipine binding. Small angle x-ray diffraction was then used to examine the differential ability of these two Class III agents to inhibit DHP-receptor binding. The time-averaged locations of bretylium, clofilium, and nimodipine in bovine cardiac phosphatidylcholine (BCPC) bilayers (supplemented with 13 mol% cholesterol) were determined to a resolution of 9 A. The location of bretylium as dominated by its phenyl ring in BCPC bilayers was found to be at the hydrocarbon core/water interface, similar to that of the dihydropyridine ring of nimodipine. The location of clofilium as dominated by its phenyl ring was found to be below the hydrocarbon/core water interface within the hydrocarbon chain region of the bilayer, similar to that of the phenyl ring of nimodipine. The location of the dihydropyridine ring portion of nimodipine has previously been shown by neutron diffraction to be located at the hydrocarbon core/water interface of native sarcoplasmic reticulum, consistent with the small angle x-ray data from model membranes in this paper. Therefore, we speculate that the nonspecific inhibition arises from the interaction of clofilium's phenyl ring with the site on the calcium channel receptor where the phenyl ring portion of nimodipine must interact. The DHP-receptor binding pathway would then involve both nonspecific (membrane) and specific (protein) binding components, both of which are necessary for receptor binding
    corecore