2,432 research outputs found

    The Morse theory of \v{C}ech and Delaunay complexes

    Full text link
    Given a finite set of points in Rn\mathbb R^n and a radius parameter, we study the \v{C}ech, Delaunay-\v{C}ech, Delaunay (or Alpha), and Wrap complexes in the light of generalized discrete Morse theory. Establishing the \v{C}ech and Delaunay complexes as sublevel sets of generalized discrete Morse functions, we prove that the four complexes are simple-homotopy equivalent by a sequence of simplicial collapses, which are explicitly described by a single discrete gradient field.Comment: 21 pages, 2 figures, improved expositio

    [4 + 2] Cycloadditions of diphenylketene with a highly substituted 1,3-diene

    Get PDF
    Diphenylketene (2) undergoes [4 + 2] cycloadditions with the s-cis fixed diene (1) to give the dihydropyran (3) and the cyclohexenone (4)

    \v{C}ech-Delaunay gradient flow and homology inference for self-maps

    Full text link
    We call a continuous self-map that reveals itself through a discrete set of point-value pairs a sampled dynamical system. Capturing the available information with chain maps on Delaunay complexes, we use persistent homology to quantify the evidence of recurrent behavior. We establish a sampling theorem to recover the eigenspace of the endomorphism on homology induced by the self-map. Using a combinatorial gradient flow arising from the discrete Morse theory for \v{C}ech and Delaunay complexes, we construct a chain map to transform the problem from the natural but expensive \v{C}ech complexes to the computationally efficient Delaunay triangulations. The fast chain map algorithm has applications beyond dynamical systems.Comment: 22 pages, 8 figure

    The light baryon spectrum in a relativistic quark model with instanton-induced quark forces I. The non-strange baryon spectrum and ground-states

    Get PDF
    This is the second of a series of three papers treating light baryon resonances up to 3 GeV within a relativistically covariant quark model based on the three-fermion Bethe-Salpeter equation with instantaneous two- and three-body forces. In this paper we apply the covariant Salpeter framework (which we developed in the first paper) to specific quark model calculations. Quark confinement is realized by a linearly rising three-body string potential with appropriate spinorial structures in Dirac-space. To describe the hyperfine structure of the baryon spectrum we adopt 't Hooft's residual interaction based on QCD-instanton effects and demonstrate that the alternative one-gluon-exchange is disfavored phenomenological grounds. Our fully relativistic framework allows to investigate the effects of the full Dirac structures of residual and confinement forces on the structure of the mass spectrum. In the present paper we present a detailed analysis of the complete non-strange baryon spectrum and show that several prominent features of the nucleon spectrum such as e.g. the Roper resonance and approximate ''parity doublets'' can be uniformly explained due to a specific interplay of relativistic effects, the confinement potential and 't Hooft's force. The results for the spectrum of strange baryons will be discussed in a subsequent paper.Comment: 59 p. postscript, including 24 figures and 25 tables, submitted to Eur.Phys.J.

    Coupled Simulation of Transient Heat Flow and Electric Currents in Thin Wires: Application to Bond Wires in Microelectronic Chip Packaging

    Full text link
    This work addresses the simulation of heat flow and electric currents in thin wires. An important application is the use of bond wires in microelectronic chip packaging. The heat distribution is modeled by an electrothermal coupled problem, which poses numerical challenges due to the presence of different geometric scales. The necessity of very fine grids is relaxed by solving and embedding a 1D sub-problem along the wire into the surrounding 3D geometry. The arising singularities are described using de Rham currents. It is shown that the problem is related to fluid flow in porous 3D media with 1D fractures [C. D'Angelo, SIAM Journal on Numerical Analysis 50.1, pp. 194-215, 2012]. A careful formulation of the 1D-3D coupling condition is essential to obtain a stable scheme that yields a physical solution. Elliptic model problems are used to investigate the numerical errors and the corresponding convergence rates. Additionally, the transient electrothermal simulation of a simplified microelectronic chip package as used in industrial applications is presented.Comment: all numerical results can be reproduced by the Matlab code openly available at https://github.com/tc88/ETwireSi

    Gegenstand und Ansätze einer dynamischen Theorie der Kostenrechnung

    Get PDF
    • …
    corecore