11 research outputs found

    Hepatocyte-specific deletion of adipose triglyceride lipase (adipose triglyceride lipase/patatin-like phospholipase domain containing 2) ameliorates dietary induced steatohepatitis in mice

    Get PDF
    Background and Aims: Increased fatty acid (FA) flux from adipose tissue to the liver contributes to the development of NAFLD. Because free FAs are key lipotoxic triggers accelerating disease progression, inhibiting adipose triglyceride lipase (ATGL)/patatin-like phospholipase domain containing 2 (PNPLA2), the main enzyme driving lipolysis, may attenuate steatohepatitis. Approach and Results: Hepatocyte-specific ATGL knockout (ATGL LKO) mice were challenged with methionine-choline–deficient (MCD) or high-fat high-carbohydrate (HFHC) diet. Serum biochemistry, hepatic lipid content and liver histology were assessed. Mechanistically, hepatic gene and protein expression of lipid metabolism, inflammation, fibrosis, apoptosis, and endoplasmic reticulum (ER) stress markers were investigated. DNA binding activity for peroxisome proliferator-activated receptor (PPAR) α and PPARδ was measured. After short hairpin RNA–mediated ATGL knockdown, HepG2 cells were treated with lipopolysaccharide (LPS) or oleic acid:palmitic acid 2:1 (OP21) to explore the direct role of ATGL in inflammation in vitro. On MCD and HFHC challenge, ATGL LKO mice showed reduced PPARα and increased PPARδ DNA binding activity when compared with challenged wild-type (WT) mice. Despite histologically and biochemically pronounced hepatic steatosis, dietary-challenged ATGL LKO mice showed lower hepatic inflammation, reflected by the reduced number of Galectin3/MAC-2 and myeloperoxidase-positive cells and low mRNA expression levels of inflammatory markers (such as IL-1β and F4/80) when compared with WT mice. In line with this, protein levels of the ER stress markers protein kinase R–like endoplasmic reticulum kinase and inositol-requiring enzyme 1α were reduced in ATGL LKO mice fed with MCD diet. Accordingly, pretreatment of LPS-treated HepG2 cells with the PPARδ agonist GW0742 suppressed mRNA expression of inflammatory markers. Additionally, ATGL knockdown in HepG2 cells attenuated LPS/OP21-induced expression of proinflammatory cytokines and chemokines such as chemokine (C-X-C motif) ligand 5, chemokine (C-C motif) ligand (Ccl) 2, and Ccl5. Conclusions: Low hepatic lipolysis and increased PPARδ activity in ATGL/PNPLA2 deficiency may counteract hepatic inflammation and ER stress despite increased steatosis. Therefore, lowering hepatocyte lipolysis through ATGL inhibition represents a promising therapeutic strategy for the treatment of steatohepatitis

    STAT3 regulated ARF expression suppresses prostate cancer metastasis.

    Get PDF
    Prostate cancer (PCa) is the most prevalent cancer in men. Hyperactive STAT3 is thought to be oncogenic in PCa. However, targeting of the IL-6/STAT3 axis in PCa patients has failed to provide therapeutic benefit. Here we show that genetic inactivation of Stat3 or IL-6 signalling in a Pten-deficient PCa mouse model accelerates cancer progression leading to metastasis. Mechanistically, we identify p19(ARF) as a direct Stat3 target. Loss of Stat3 signalling disrupts the ARF-Mdm2-p53 tumour suppressor axis bypassing senescence. Strikingly, we also identify STAT3 and CDKN2A mutations in primary human PCa. STAT3 and CDKN2A deletions co-occurred with high frequency in PCa metastases. In accordance, loss of STAT3 and p14(ARF) expression in patient tumours correlates with increased risk of disease recurrence and metastatic PCa. Thus, STAT3 and ARF may be prognostic markers to stratify high from low risk PCa patients. Our findings challenge the current discussion on therapeutic benefit or risk of IL-6/STAT3 inhibition.Lukas Kenner and Jan Pencik are supported by FWF, P26011 and the Genome Research-Austria project “Inflammobiota” grants. Helmut Dolznig is supported by the Herzfelder Family Foundation and the Niederösterr. Forschungs-und Bildungsges.m.b.H (nfb). Richard Moriggl is supported by grant SFB-F2807 and SFB-F4707 from the Austrian Science Fund (FWF), Ali Moazzami is supported by Infrastructure for biosciences-Strategic fund, SciLifeLab and Formas, Zoran Culig is supported by FWF, P24428, Athena Chalaris and Stefan Rose-John are supported by the Deutsche Forschungsgemeinschaft (Grant SFB 877, Project A1and the Cluster of Excellence --“Inflammation at Interfaces”). Work of the Aberger lab was supported by the Austrian Science Fund FWF (Projects P25629 and W1213), the European FP7 Marie-Curie Initial Training Network HEALING and the priority program Biosciences and Health of the Paris-Lodron University of Salzburg. Valeria Poli is supported by the Italian Association for Cancer Research (AIRC, No IG13009). Richard Kennedy and Steven Walker are supported by the McClay Foundation and the Movember Centre of Excellence (PC-UK and Movember). Gerda Egger is supported by FWF, P27616. Tim Malcolm and Suzanne Turner are supported by Leukaemia and Lymphoma Research.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms873

    Ursodeoxycholic acid: Effects on hepatic unfolded protein response, apoptosis and oxidative stress in morbidly obese patients

    No full text
    Background & Aims Ursodeoxycholic acid (UDCA) is a secondary hydrophilic bile acid (BA) used as therapy for a range of hepatobiliary diseases. Its efficacy in nonalcoholic fatty liver disease (NAFLD) is still under debate. Here, we aimed to decipher molecular mechanisms of UDCA in regulating endoplasmic reticulum (ER) homeostasis, apoptosis and oxidative stress in morbidly obese patients. Methods In this randomized controlled pharmacodynamic study, liver and serum samples from 40 wellmatched morbidly obese NAFLDpatients were analysed. Patients received UDCA (20 mg/kg/d) or no treatment 3 weeks before samples were obtained during bariatric surgery. Results Patients treated with UDCA displayed higher scoring of steatosis (S), activity (A) and fibrosis (F), the so called SAFscoring. UDCA partially disrupted ER homeostasis by inducing the expression of the ER stress markers CHOP and GRP78. However, ERDJ4 and sXBP1 levels were unaffected. Enhanced CHOP expression, a suggested proapoptotic trigger, failed to induce apoptosis via BAK and BAX in the UDCA treated group. Potentially proapoptotic miR34a was reduced in the vesiclefree fraction in serum but not in liver after UDCA treatment. Thiobarbituric acid reactive substances, 4hydroxynonenal and mRNA levels of several oxidative stress indicators remained unchanged after UDCA treatment. Conclusion Our data suggest that UDCA treatment has ambivalent effects in NAFLD patients. While increased SAFscores and elevated CHOP levels may be disadvantageous in the UDCA treated cohort, UDCA's cytoprotective properties potentially changed the apoptotic threshold as reflected by absent induction of proapoptotic triggers. UDCA treatment failed to improve the oxidative stress status in NAFLD patients.(VLID)483931

    AQP3 is regulated by PPARÎł and JNK in hepatic stellate cells carrying PNPLA3 I148M

    No full text
    Abstract Aquaglyceroporins (AQPs) allow the movement of glycerol that is required for triglyceride formation in hepatic stellate cells (HSC), as key cellular source of fibrogenesis in the liver. The genetic polymorphism I148M of the patatin-like phospholipase domain-containing 3 (PNPLA3) is associated with hepatic steatosis and its progression to steatohepatitis (NASH), fibrosis and cancer. We aimed to explore the role of AQP3 for HSC activation and unveil its potential interactions with PNPLA3. HSC were isolated from human liver, experiments were performed in primary HSC and human HSC line LX2. AQP3 was the only aquaglyceroporin present in HSC and its expression decreased during activation. The PPARÎł agonist, rosiglitazone, recovered AQP3 expression also in PNPLA3 I148M carrying HSC. When PNPLA3 was silenced, AQP3 expression increased. In liver sections from patients with NASH, the decreased amount of AQP3 was proportional to the severity of fibrosis and presence of the PNPLA3 I148M variant. In PNPLA3 I148M cells, the blockade of JNK pathway upregulated AQP3 in synergism with PPARÎł. In conclusion, we demonstrated profound reduction of AQP3 in HSC carrying the PNPLA3 I148M variant in parallel to decreased PPARÎł activation, which could be rescued by rosiglitazone and blockade of JNK

    SERPINB7 Expression Predicts Poor Pancreatic Cancer Survival Upon Gemcitabine Treatment

    No full text
    Stratification of patients with pancreatic ductal adenocarcinoma (PDAC) remains a key challenge in the field of clinical oncology. No predictive biomarkers have yet been found for any available treatment options. Previously, we identified SERPINB7 as a putative biomarker for PDAC and thus, herein, we aimed to validate our previous findings and assessed the predictive value of SERPINB7. Patients who underwent surgery and received gemcitabine (gem) or gemcitabine plus nab-paclitaxel (gem/nab) as adjuvant therapy, between 2011 and 2017, were included in this study (n = 57). Expression level of SERPINB7 was assessed in tumor tissue by immunohistochemistry (IHC) and RNA in situ hybridization (RNA ISH). Its association with disease-free survival (DFS) and overall survival (OS) was investigated. While IHC did not show any correlation between survival and the protein level of SERPINB7, RNA ISH revealed that expression of SERPINB7 was associated with a poor DFS (P = .01) and OS (P = .002) in the gem group but not in the gem/nab. Adjusted Cox-regression analysis confirmed the independent predictive value of SERPINB7 on OS (P = .006, HR: 3.47; 95% CI: 1.49–8.09) in the gem group. In conclusion, SERPINB7 was identified as the first predictive RNA biomarker for PDAC. This study suggests that patients who expressed SERPINB7 might receive another treatment than gem alone

    Biochemical and genetic predictors of overall survival in patients with metastatic pancreatic cancer treated with capecitabine and nabpaclitaxel

    No full text
    Pancreatic cancer is a dismal disease with a mortality rate almost similar to its incidence rate. To date, there are neither validated predictive nor prognostic biomarkers for this lethal disease. Thus, the aim of the present study was to retrospectively investigate the capability of biochemical parameters and molecular profiles to predict survival of patients with metastatic pancreatic ductal adenocarcinoma (mPDAC) who participated in a phase II clinical trial to test the safety and efficacy of the combination treatment of capecitabine plus nab-paclitaxel. Herein, we investigated the association of 18 biochemical parameters obtained from routine diagnosis and the clinical outcome of the 30 patients enrolled in the clinical trial. Furthermore, we analysed formalin-fixed paraffin-embedded (FFPE) tumour tissue to identify molecular biomarkers via RNA seq and the Illumina TruSeq Amplicon Cancer panel which covers 48 hotspot genes. Our analysis identified SERPINB7 as a novel transcript and a DNA mutation signature that might predict a poor outcome of disease. Moreover, we identified the bilirubin basal level as an independent predictive factor for overall survival in our study cohort.ISSN:2045-232
    corecore