296 research outputs found

    Water-Repellent TiO₂-Organic Dye-Based Air Filters for Efficient Visible-Light-Activated Photochemical Inactivation against Bioaerosols

    Get PDF
    Recently, bioaerosols, including the 2019 novel coronavirus, pose a serious threat to global public health. Herein, we introduce a visible-light-activated (VLA) antimicrobial air filter functionalized with titanium dioxide (TiO2)–crystal violet (CV) nanocomposites facilitating abandoned visible light from sunlight or indoor lights. The TiO2–CV based VLA antimicrobial air filters exhibit a potent inactivation rate of ∼99.98% and filtration efficiency of ∼99.9% against various bioaerosols. Under visible-light, the CV is involved in overall inactivation by inducing reactive oxygen species production both directly (CV itself) and indirectly (in combination with TiO2). Moreover, the susceptibility of the CV to humidity was significantly improved by forming a hydrophobic molecular layer on the TiO2 surface, highlighting its potential applicability in real environments such as exhaled or humid air. We believe this work can open a new avenue for designing and realizing practical antimicrobial technology using ubiquitous visible-light energy against the threat of infectious bioaerosols

    A Conceptual Framework for Designing Informatics-based Services in Manufacturing Industries

    Get PDF
    Numerous manufacturing companies have "servitized" their value propositions to address product commoditization and sustainability issues. Service-essentially different from a product-contributes to the fulfillment of customers' unmet needs and increases the freedom of finding an environmentally more benign offering beyond simply offering the product. Informatics is a key to the design of services in manufacturing companies. Informatics facilitates the collection of various types of data from products and customers and enables the production and delivery of useful information for customers. This paper (1) proposes a conceptual framework for designing informatics-based services in manufacturing industries, (2) introduces a service design case study that the authors recently conducted with a major car manufacturer in Korea, and (3) suggests future research issues. This paper is expected to contribute to product-service integration in manufacturing companies in this information economy. (C) 2015 The Authors. Published by Elsevier B.Vopen1111Ysciescopu

    Immune function biomarkers in children exposed to lead and organochlorine compounds: a cross-sectional study

    Get PDF
    BACKGROUND: Different organochlorines and lead (Pb) have been shown to have immunomodulating properties. Children are at greater risk for exposure to these environmental toxicants, but very little data exist on simultaneous exposures to these substances. METHODS: We investigated whether the organochlorine compounds (OC) dichlorodiphenylethylene (DDE), hexachlorobenzene (HCB), hexachlorocyclohexane (γ-HCH), the sum of polychlorinated biphenyls (ΣPCBs) and Pb were associated with immune markers such as immunoglobulin (Ig) levels, white blood cell (WBC), counts of lymphocytes; eosinophils and their eosinophilic granula as well as IgE count on basophils. The investigation was part of a cross-sectional environmental study in Hesse, Germany. In 1995, exposure to OC and Pb were determined, questionnaire data collected and immune markers quantified in 331 children. For the analyses, exposure (OC and Pb) concentrations were grouped in quartiles (γ-HCH into tertiles). Using linear regression, controlling for age, gender, passive smoking, serum lipids, and infections in the previous 12 months, we assessed the association between exposures and immune markers. Adjusted geometric means are provided for the different exposure levels. RESULTS: Geometric means were: DDE 0.32 μg/L, ΣPCBs 0.50 μg/L, HCB 0.22 μg/L, γ-HCH 0.02 μg/L and Pb 26.8 μg/L. The ΣPCBs was significantly associated with increased IgM levels, whereas HCB was inversely related to IgM. There was a higher number of NK cells (CD56+) with increased γ-HCH concentrations. At higher lead concentrations we saw increased IgE levels. DDE showed the most associations with significant increases in WBC count, in IgE count on basophils, IgE, IgG, and IgA levels. DDE was also found to significantly decrease eosinophilic granula content. CONCLUSION: Low-level exposures to OC and lead (Pb) in children may have immunomodulating effects. The increased IgE levels, IgE count on basophils, and the reduction of eosinophilic granula at higher DDE concentrations showed a most consistent pattern, which could be of clinical importance in the etiology of allergic diseases

    Sonic Hedgehog Gene Delivery to the Rodent Heart Promotes Angiogenesis via iNOS/Netrin-1/PKC Pathway

    Get PDF
    We hypothesized that genetic modification of mesenchymal stem cells (MSCs) with Sonic Hedgehog (Shh) transgene, a morphogen during embryonic development and embryonic and adult stem cell growth, improved their survival and angiogenic potential in the ischemic heart via iNOS/netrin/PKC pathway.MSCs from young Fisher-344 rat bone marrow were purified and transfected with pCMV Shh plasmid ((Shh)MSCs). Immunofluorescence, RT-PCR and Western blotting showed higher expression of Shh in (Shh)MSCs which also led to increased expression of angiogenic and pro-survival growth factors in (Shh)MSCs. Significantly improved migration and tube formation was seen in (Shh)MSCs as compared to empty vector transfected MSCs ((Emp)MSCs). Significant upregulation of netrin-1 and iNOS was observed in (Shh)MSCs in PI3K independent but PKC dependent manner. For in vivo studies, acute myocardial infarction model was developed in Fisher-344 rats. The animals were grouped to receive 70 microl basal DMEM without cells (group-1) or containing 1x10(6) (Emp)MSCs (group-2) and (Shh)MSCs (group-3). Group-4 received recombinant netrin-1 protein injection into the infarcted heart. FISH and sry-quantification revealed improved survival of (Shh)MSCs post engraftment. Histological studies combined with fluorescent microspheres showed increased density of functionally competent blood vessels in group-3 and group-4. Echocardiography showed significantly preserved heart function indices post engraftment with (Shh)MSCs in group-3 animals.Reprogramming of stem cells with Shh maximizes their survival and angiogenic potential in the heart via iNOS/netrin-1/PKC signaling

    Response of the mouse lung transcriptome to welding fume: effects of stainless and mild steel fumes on lung gene expression in A/J and C57BL/6J mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Debate exists as to whether welding fume is carcinogenic, but epidemiological evidence suggests that welders are an at risk population for the development of lung cancer. Recently, we found that exposure to welding fume caused an acutely greater and prolonged lung inflammatory response in lung tumor susceptible A/J versus resistant C57BL/6J (B6) mice and a trend for increased tumor incidence after stainless steel (SS) fume exposure. Here, our objective was to examine potential strain-dependent differences in the regulation and resolution of the lung inflammatory response induced by carcinogenic (Cr and Ni abundant) or non-carcinogenic (iron abundant) metal-containing welding fumes at the transcriptome level.</p> <p>Methods</p> <p>Mice were exposed four times by pharyngeal aspiration to 5 mg/kg iron abundant gas metal arc-mild steel (GMA-MS), Cr and Ni abundant GMA-SS fume or vehicle and were euthanized 4 and 16 weeks after the last exposure. Whole lung microarray using Illumina Mouse Ref-8 expression beadchips was done.</p> <p>Results</p> <p>Overall, we found that tumor susceptibility was associated with a more marked transcriptional response to both GMA-MS and -SS welding fumes. Also, Ingenuity Pathway Analysis revealed that gene regulation and expression in the top molecular networks differed between the strains at both time points post-exposure. Interestingly, a common finding between the strains was that GMA-MS fume exposure altered behavioral gene networks. In contrast, GMA-SS fume exposure chronically upregulated chemotactic and immunomodulatory genes such as <it>CCL3</it>, <it>CCL4</it>, <it>CXCL2</it>, and <it>MMP12 </it>in the A/J strain. In the GMA-SS-exposed B6 mouse, genes that initially downregulated cellular movement, hematological system development/function and immune response were involved at both time points post-exposure. However, at 16 weeks, a transcriptional switch to an upregulation for neutrophil chemotactic genes was found and included genes such as <it>S100A8</it>, <it>S100A9 </it>and <it>MMP9</it>.</p> <p>Conclusions</p> <p>Collectively, our results demonstrate that lung tumor susceptibility may predispose the A/J strain to a prolonged dysregulation of immunomodulatory genes, thereby delaying the recovery from welding fume-induced lung inflammation. Additionally, our results provide unique insight into strain- and welding fume-dependent genetic factors involved in the lung response to welding fume.</p

    Chemical Basis of Metabolic Network Organization

    Get PDF
    Although the metabolic networks of the three domains of life consist of different constituents and metabolic pathways, they exhibit the same scale-free organization. This phenomenon has been hypothetically explained by preferential attachment principle that the new-recruited metabolites attach preferentially to those that are already well connected. However, since metabolites are usually small molecules and metabolic processes are basically chemical reactions, we speculate that the metabolic network organization may have a chemical basis. In this paper, chemoinformatic analyses on metabolic networks of Kyoto Encyclopedia of Genes and Genomes (KEGG), Escherichia coli and Saccharomyces cerevisiae were performed. It was found that there exist qualitative and quantitative correlations between network topology and chemical properties of metabolites. The metabolites with larger degrees of connectivity (hubs) are of relatively stronger polarity. This suggests that metabolic networks are chemically organized to a certain extent, which was further elucidated in terms of high concentrations required by metabolic hubs to drive a variety of reactions. This finding not only provides a chemical explanation to the preferential attachment principle for metabolic network expansion, but also has important implications for metabolic network design and metabolite concentration prediction

    lin-28 Controls the Succession of Cell Fate Choices via Two Distinct Activities

    Get PDF
    lin-28 is a conserved regulator of cell fate succession in animals. In Caenorhabditis elegans, it is a component of the heterochronic gene pathway that governs larval developmental timing, while its vertebrate homologs promote pluripotency and control differentiation in diverse tissues. The RNA binding protein encoded by lin-28 can directly inhibit let-7 microRNA processing by a novel mechanism that is conserved from worms to humans. We found that C. elegans LIN-28 protein can interact with four distinct let-7 family pre-microRNAs, but in vivo inhibits the premature accumulation of only let-7. Surprisingly, however, lin-28 does not require let-7 or its relatives for its characteristic promotion of second larval stage cell fates. In other words, we find that the premature accumulation of mature let-7 does not account for lin-28's precocious phenotype. To explain let-7's role in lin-28 activity, we provide evidence that lin-28 acts in two steps: first, the let-7–independent positive regulation of hbl-1 through its 3′UTR to control L2 stage-specific cell fates; and second, a let-7–dependent step that controls subsequent fates via repression of lin-41. Our evidence also indicates that let-7 functions one stage earlier in C. elegans development than previously thought. Importantly, lin-28's two-step mechanism resembles that of the heterochronic gene lin-14, and the overlap of their activities suggests a clockwork mechanism for developmental timing. Furthermore, this model explains the previous observation that mammalian Lin28 has two genetically separable activities. Thus, lin-28's two-step mechanism may be an essential feature of its evolutionarily conserved role in cell fate succession

    β-Amyloid 1-42 Oligomers Impair Function of Human Embryonic Stem Cell-Derived Forebrain Cholinergic Neurons

    Get PDF
    Cognitive impairment in Alzheimer's disease (AD) patients is associated with a decline in the levels of growth factors, impairment of axonal transport and marked degeneration of basal forebrain cholinergic neurons (BFCNs). Neurogenesis persists in the adult human brain, and the stimulation of regenerative processes in the CNS is an attractive prospect for neuroreplacement therapy in neurodegenerative diseases such as AD. Currently, it is still not clear how the pathophysiological environment in the AD brain affects stem cell biology. Previous studies investigating the effects of the β-amyloid (Aβ) peptide on neurogenesis have been inconclusive, since both neurogenic and neurotoxic effects on progenitor cell populations have been reported. In this study, we treated pluripotent human embryonic stem (hES) cells with nerve growth factor (NGF) as well as with fibrillar and oligomeric Aβ1-40 and Aβ1-42 (nM-µM concentrations) and thereafter studied the differentiation in vitro during 28-35 days. The process applied real time quantitative PCR, immunocytochemistry as well as functional studies of intracellular calcium signaling. Treatment with NGF promoted the differentiation into functionally mature BFCNs. In comparison to untreated cells, oligomeric Aβ1–40 increased the number of functional neurons, whereas oligomeric Aβ1–42 suppressed the number of functional neurons. Interestingly, oligomeric Aβ exposure did not influence the number of hES cell-derived neurons compared with untreated cells, while in contrast fibrillar Aβ1–40 and Aβ1–42 induced gliogenesis. These findings indicate that Aβ1–42 oligomers may impair the function of stem cell-derived neurons. We propose that it may be possible for future AD therapies to promote the maturation of functional stem cell-derived neurons by altering the brain microenvironment with trophic support and by targeting different aggregation forms of Aβ

    Gene expression profiling in the lung tissue of cynomolgus monkeys in response to repeated exposure to welding fumes

    Get PDF
    Many in the welding industry suffer from bronchitis, lung function changes, metal fume fever, and diseases related to respiratory damage. These phenomena are associated with welding fumes; however, the mechanism behind these findings remains to be elucidated. In this study, the lungs of cynomolgus monkeys were exposed to MMA-SS welding fumes for 229 days and allowed to recover for 153 days. After the exposure and recovery period, gene expression profiles were investigated using the Affymetrix GeneChip® Human U133 plus 2.0. In total, it was confirmed that 1,116 genes were up-or down-regulated (over 2-fold changes, P < 0.01) for the T1 (31.4 ± 2.8 mg/m3) and T2 (62.5 ± 2.7 mg/m3) dose groups. Differentially expressed genes in the exposure and recovery groups were analyzed, based on hierarchical clustering, and were imported into Ingenuity Pathways Analysis to analyze the biological and toxicological functions. Functional analysis identified genes involved in immunological disease in both groups. Additionally, differentially expressed genes in common between monkeys and rats following welding fume exposure were compared using microarray data, and the gene expression of selected genes was verified by real-time PCR. Genes such as CHI3L1, RARRES1, and CTSB were up-regulated and genes such as CYP26B1, ID4, and NRGN were down-regulated in both monkeys and rats following welding fume exposure. This is the first comprehensive gene expression profiling conducted for welding fume exposure in monkeys, and these expressed genes are expected to be useful in helping to understand transcriptional changes in monkey lungs after welding fume exposure
    corecore