12 research outputs found

    Aluminum nitride waveguide beam splitters for integrated quantum photonic circuits

    Full text link
    We demonstrate integrated photonic circuits for quantum devices using sputtered polycrystalline aluminum nitride (AlN) on insulator. The on-chip AlN waveguide directional couplers, which are one of the most important components in quantum photonics, are fabricated and show the output power splitting ratios from 50:50 to 99:1. The polarization beam splitters with an extinction ratio of more than 10 dB are also realized from the AlN directional couplers. Using the fabricated AlN waveguide beam splitters, we observe the Hong-Ou-Mandel interference with a visibility of 91.7 +(-) 5.66 %.Comment: 9 pages, 4 figure

    Tailoring Fano Resonance for Flat-Top Broadband Reflectors Based on Single Guided-Mode Resonance

    No full text

    Host-Guest Chemistry in the Gas Phase: Complex Formation with 18-Crown-6 Enhances Helicity of Alanine-Based Peptides

    No full text
    The gas-phase helix propensities of alanine-based polypeptides are studied with different locations of a Lys residue and host guest interactions with 18-Crown-6 (18C6). A series of model peptides Ac-Ala(9-n)-LysH(+)-Ala(n) (n = 0, 1, 3, 5, 7, and 9) is examined alone and with 18C6 using traveling wave ion mobility mass spectrometry combined with molecular dynamics (MD) simulations. The gasphase helices are observed from the peptides whose Lys residue is located close to the C-terminus so that the Lys exerts its capping effect on the C-terminal carbonyl groups. The peptides, which interact with 18C6 in the gas phase, show enhanced helical propensities. The enhanced helicity of the peptide in the complex is attributed by isolation of the Lys butylammonium group from the helix backbone and the interaction of methylene groups of 18C6, which possess localized positive partial charges, with C-terminal carbonyl groups serving as a cap to stabilize the helix.X1177sciescopu

    Probing Conformational Changes of Ubiquitin by Host–Guest Chemistry Using Electrospray Ionization Mass Spectrometry

    No full text
    We report mechanistic studies of structural changes of ubiquitin (Ub) by host-guest chemistry with cucurbit[6]uril (CB[6]) using electrospray ionization mass spectrometry (ESI-MS) combined with circular dichroism spectroscopy and molecular dynamics (MD) simulation. CB[6] binds selectively to lysine (Lys) residues of proteins. Low energy collision-induced dissociation (CID) of the protein-CB[6] complex reveals CB[6] binding sites. We previously reported (Anal. Chem. 2011, 83, 7916-7923) shifts in major charge states along with Ub-CB[6] complexes in the ESI-MS spectrum with addition of CB[6] to Ub from water. We also reported that CB[6] is present only at Lys(6) or Lys(11) in high charge state (+13) complex. In this study, we provide additional information to explain unique conformational change mechanisms of Ub by host-guest chemistry with CB[6] compared with solvent-driven conformational change of Ub. Additional CID study reveals that CB[6] is bound only to Lys(48) and Lys(63) in low charge state (+7) complex. MD simulation studies reveal that the high charge state complexes are attributed to the CB[6] bound to Lys(11). The complexation prohibits salt bridge formation between Lys(11) and Glu(34) and induces conformational change of Ub. This results in formation of high charge state complexes in the gas phase. Then, by utilizing stronger host-guest chemistry of CB[6] with pentamethylenediamine, refolding of Ub via detaching CB[6] from the protein is performed. Overall, this study gives an insight into the mechanism of denatured Ub ion formation via host-guest interactions with CB[6]. Furthermore, this provides a direction for designing function-controllable supramolecular system comprising proteins and synthetic host molecules.X112020sciescopu

    Unveiling Electrode-Electrolyte Design-Based NO Reduction for NH3 Synthesis

    No full text
    The electrochemical N-2 reduction reaction has attracted interest as a potential alternative to the Haber-Bosch process, but a significantly low conversion efficiency and a significantly low ammonia production rate stimulate the need for alternatives. Here, we represent the electrochemical reduction of nitric oxide (NO) on a nanostructured Ag electrode in combination with a rationally designed electrolyte containing the EDTA-Fe2+ metal complex (EFeMC), which results in an similar to 100% efficiency for NH3 with a current density of 50 mA/cm(2) at -0.165 V-RHE , without any degradation in catalytic activity or product selectivity up to 120 h. Economic analysis using itemized cost estimation predicted that the synthesis of ammonia from NO reduction in an EFeMC-designed electrolyte can be market competitive at an electricity price of $0.03 kWh(-1) with a current density of >125 mA/cm(2) . Therefore, this approach opens an entirely new avenue of renewable electricity-driven ammonia synthesis

    Highly Uniform Atomic Layer-Deposited MoS2@3D-Ni-Foam: A Novel Approach To Prepare an Electrode for Supercapacitors

    No full text
    This article takes an effort to establish the potential of atomic layer deposition (ALD) technique toward the field of supercapacitors by preparing molybdenum disulfide (MoS2) as its electrode. 'While molybdenum hexacarbonyl [Mo(CO)(6)] serves as a novel precursor toward the low temperature 'synthesis of ALD-grown MoS2, H2S plasma helps to deposit its polycrystalline phase at 200 degrees C. Several ex situ characterizations such as X-ray diffractometry (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and so forth are performed in detail to study the as-grown MoS2 film on a Si/SiO2 substrate. While stoichiometric MoS2 with very negligible amount of C and O impurities was evident from XPS, the XRD and high-resolution transmission electron microscopy analyses confirmed the (002)-oriented polycrystalline h-MoS2 phase of the as-grown film. A comparative study of ALD-grown MoS2 as a supercapacitor electrode on 2-dimensional stainless steel and on 3-dimensional (3D) Ni-foam substrates clearly reflects the advantage and the potential of ALD for growing a uniform and conformal electrode material on a 3D-scaffold layer. Cyclic voltammetry measurements showed both double-layer capacitance and capacitance contributed by the faradic reaction at the MoS2 electrode surface. The optimum number of ALD cycles was also found out for achieving maximum capacitance for such a MoS2@3D-Ni-foam electrode. A record high areal capacitance of 3400 mF/cm(2) was achieved for MoS2@3D-Ni-foam grown by 400 ALD cycles at a current density of 3 mA/cm(2). Moreover, the ALD-grown MoS2@3D-Ni-foam composite also retains high areal capacitance, even up to a high current density of 50 mA/cm(2). Finally, this directly grown MoS2 electrode on 3D-Ni-foam by ALD shows high cyclic stability (>80%) over 4500 charge discharge cycles which must invoke the research community to further explore the potential of ALD for such applications

    Thickness-dependent electrochemical response of plasma enhanced atomic layer deposited WS2 anodes in Na-ion battery

    No full text
    In spite of the promising future of the Sodium (Na)-ion batteries (NIBs), it still suffers with low specific capacity and stability mostly owing to the slow kinetics associated with Na ion. In this regard, transition metal sulfides (TMSs) are considered to be one of the best anode materials that can efficiently store Na ions not only owing to their graphite-like layered structure but also through conversion reactions facilitated by their multi-oxidation states. However, the poor cyclic stability of these TMSs attributed to the low electronic conductivity of the TMSs hinders the practical use. Therefore, understanding on an optimized mass loading (or physical dimensions) and configuration of such active electrode material are essential to improve the kinetics associated with Na-ion and electron pathway. To study this, plasmaenhanced atomic layer deposition (PEALD) is employed to grow WS2 using tungsten hexacarbonyl [W(CO)(6)] and H2S plasma as a precursor and reactant, respectively. The thin films of WS2 deposited directly on stainless steel coin with varying ALD cycles (200-600) are then tested as anode in NIBs without any binder or conducting carbon. Two-stage growth mode is observed with increasing number of ALD cycles which leads to WS2 nano-flakes formation on top of a two-dimensional film of the same. Reversible conversion and intercalation reactions from the cyclic voltammetry measurements are evident for the electrochemical stability of these pristine-WS2 films. While the highest areal capacity of similar to 58.8 nAh/cm(2) at a current density of 50 mu A/cm(2), after 50 charge-discharge cycles, is achieved with 400 ALD cycles, the highest capacity retention (similar to 72.5%) is observed for the film deposited with minimum (200) ALD cycles under same conditions. However, the capacity as well as its retention degrades drastically when the number of ALD cycles is further increased beyond 400. In this study, we address a critical issue associated with WS2 as an anode material for NIBs which should be similarly true for other TMSs as well. (C) 2019 Elsevier Ltd. All rights reserved

    Host–Guest Chemistry in the Gas Phase: Complex Formation with 18-Crown-6 Enhances Helicity of Alanine-Based Peptides

    No full text
    The gas-phase helix propensities of alanine-based polypeptides are studied with different locations of a Lys residue and host–guest interactions with 18-Crown-6 (18C6). A series of model peptides Ac-Ala<sub>9–<i>n</i></sub>-LysH<sup>+</sup>-Ala<sub><i>n</i></sub> (<i>n</i> = 0, 1, 3, 5, 7, and 9) is examined alone and with 18C6 using traveling wave ion mobility mass spectrometry combined with molecular dynamics (MD) simulations. The gas-phase helices are observed from the peptides whose Lys residue is located close to the C-terminus so that the Lys exerts its capping effect on the C-terminal carbonyl groups. The peptides, which interact with 18C6 in the gas phase, show enhanced helical propensities. The enhanced helicity of the peptide in the complex is attributed by isolation of the Lys butylammonium group from the helix backbone and the interaction of methylene groups of 18C6, which possess localized positive partial charges, with C-terminal carbonyl groups serving as a cap to stabilize the helix
    corecore