279 research outputs found

    Only-Train-Once MR Fingerprinting for Magnetization Transfer Contrast Quantification

    Full text link
    Magnetization transfer contrast magnetic resonance fingerprinting (MTC-MRF) is a novel quantitative imaging technique that simultaneously measures several tissue parameters of semisolid macromolecule and free bulk water. In this study, we propose an Only-Train-Once MR fingerprinting (OTOM) framework that estimates the free bulk water and MTC tissue parameters from MR fingerprints regardless of MRF schedule, thereby avoiding time-consuming process such as generation of training dataset and network training according to each MRF schedule. A recurrent neural network is designed to cope with two types of variants of MRF schedules: 1) various lengths and 2) various patterns. Experiments on digital phantoms and in vivo data demonstrate that our approach can achieve accurate quantification for the water and MTC parameters with multiple MRF schedules. Moreover, the proposed method is in excellent agreement with the conventional deep learning and fitting methods. The flexible OTOM framework could be an efficient tissue quantification tool for various MRF protocols.Comment: Accepted at 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI'22

    Effect of biochars pyrolyzed in N2 and CO2, and feedstock on microbial community in metal(loid)s contaminated soils

    Get PDF
    Little is known about the effects of applying amendments on soil for immobilizing metal(loid)s on the soil microbial community. Alterations in the microbial community were examined after incubation of treated contaminated soils. One soil was contaminated with Pb and As, a second soil with Cd and Zn. Red pepper stalk (RPS) and biochars produced from RPS in either N2 atmosphere (RPSN) or CO2 atmosphere (RPSC) were applied at a rate of 2.5% to the two soils and incubated for 30 days. Bacterial communities of control and treated soils were characterized by sequencing 16S rRNA genes using the Illumina MiSeq sequencing. In both soils, bacterial richness increased in the amended soils, though somewhat differently between the treatments. Evenness values decreased significantly, and the final overall diversities were reduced. The neutralization of pH, reduced available concentrations of Pb or Cd, and supplementation of available carbon and surface area could be possible factors affecting the community changes. Biochar amendments caused the soil bacterial communities to become more similar than those in the not amended soils. The bacterial community structures at the phylum and genus levels showed that amendment addition might restore the normal bacterial community of soils, and cause soil bacterial communities in contaminated soils to normalize and stabilize

    Amide proton transfer imaging in stroke

    Get PDF
    Amide proton transfer (APT) imaging, a variant of chemical exchange saturation transfer MRI, has shown promise in detecting ischemic tissue acidosis following impaired aerobic metabolism in animal models and in human stroke patients due to the sensitivity of the amide proton exchange rate to changes in pH within the physiological range. Recent studies have demonstrated the possibility of using APT-MRI to detect acidosis of the ischemic penumbra, enabling the assessment of stroke severity and risk of progression, monitoring of treatment progress, and prognostication of clinical outcome. This paper reviews current APT imaging methods actively used in ischemic stroke research and explores the clinical aspects of ischemic stroke and future applications for these methods

    Numb Chin Syndrome with Concomitant Painful Ophthalmoplegia Leading to a Diagnosis of Diffuse Large B Cell Lymphoma

    Get PDF
    Painful ophthalmoplegia (PO) and concomitant numb chin syndrome (NCS) is a very rare event. There are a few reports in the literature about PO and concomitant NCS that have preceded the diagnosis of a malignancy. In this report, we describe a patient with diffuse large B cell lymphoma who presented with PO and concomitant NCS as the initial symptom of the disease

    Clinical factors affecting progression-free survival with crizotinib in ALK-positive non-small cell lung cancer

    Get PDF
    Background/Aims: Although crizotinib is standard chemotherapy for advanced anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC), clinical factors affecting progression-free survival (PFS) have not been reported. The purpose of this study was to identify clinical factors affecting PFS of crizotinib and develop a prognostic model for advanced ALK-positive NSCLC. Methods: Clinicopathologic features of patients enrolled in PROFILE 1001, 1005, 1007, and 1014 (training cohort) were reviewed. We conducted multivariate Cox analysis for PFS and overall survival (OS) in the training cohort (n = 159) and generated a proportional hazards model based on significant clinicopathologic factors, and then validated the model in an independent validation cohort (n = 40). Results: In the training cohort, the objective response rate was 81.5%. Median PFS and OS from the start of crizotinib were 12.4 and 31.3 months, respectively. Multivariate Cox analysis showed poor performance status, number of metastatic organs (>= 3), and no response to crizotinib independently associated shorter PFS. Based on a score derived from these three factors, median PFS and OS of patients with one or two factors were significantly shorter compared to those without these factors (median PFS, 22.4 months vs. 10.5 months vs. 6.5 months; median OS, not reached vs. 29.1 months vs. 11.8 months, respectively; p < 0.001 for each group). This model also had validated in an independent validation cohort. Conclusions: Performance status, number of metastatic organs, and response to crizotinib affected PFS of crizotinib in ALK-positive NSCLC. Based on these factors, we developed a simple and useful prediction model for PFS.

    Causes and effects of 2008 financial crisis

    Get PDF
    Beginning in the mid 2007’s the US financial market started to slide into the “worst financial crisis since the Great Depression of the early 1930’s” (Thakor, 2015: p.156). The domino effect of several events and occasions were leading first to a countrywide recession in the USA then later spreading globally. In the following this term paper will deal with the main causes and effects of 2008 financial crisis. Unlike other topics in literature there is no consensus about the question of guilt in this sense. Among economists there are different approaches to explain the main causes of the financial crisis

    Genome-edited HEADING DATE 3a knockout enhances leaf production in Perilla frutescens

    Get PDF
    Environmental cues regulate the transition of many plants from vegetative to flowering development. Day length, or photoperiod, is one cue that synchronizes flowering by changing seasons. Consequently, the molecular mechanism of flowering control is prominent in Arabidopsis and rice, where essential genes like FLOWERING LOCUS T (FT) homolog, HEADING DATE 3a (Hd3a), have been connected to flowering regulation. Perilla is a nutrient-rich leaf vegetable, and the flowering mechanism remains largely elusive. We identified flowering-related genes under short-day conditions using RNA sequencing to develop an enhanced leaf production trait using the flowering mechanism in the perilla. Initially, an Hd3a-like gene was cloned from the perilla and defined as PfHd3a. Furthermore, PfHd3a is highly rhythmically expressed in mature leaves under short-day and long-day conditions. Ectopic expression of PfHd3a in Atft-1 mutant plants has been shown to complement Arabidopsis FT function, resulting in early flowering. In addition, our genetic approaches revealed that overexpression of PfHd3a in perilla caused early flowering. In contrast, the CRISPR/Cas9 generated PfHd3a-mutant perilla showed significantly late flowering, resulting in approximately 50% leaf production enhancement compared to the control. Our results suggest that PfHd3a plays a vital role in regulating flowering in the perilla and is a potential target for molecular breeding in the perilla

    Antitumor Activity of TRAIL Recombinant Adenovirus in Human Malignant Glioma Cells

    Get PDF
    Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL) has been reported to specifically kill malignant cells but to be relatively nontoxic to normal cells. One of disadvantages to previous in vivo protocols was the need for large quantities of TRAIL recombinant protein to suppress tumor growth. To evaluate the antitumor activity and therapeutic value of the TRAIL gene, we constructed adenoviral vectors expressing the human TRAIL gene (Ad.hTRAIL) and transferred them into malignant glioma cells in vitro and tumors in vivo, as an alternative to recombinant soluble TRAIL protein. The results show that TRAIL-sensitive glioma cells infected Ad.hTRAIL undergo apoptosis through the production and expression of TRAIL protein. The in vitro transfer elicited apoptosis, as demonstrated by the quantification of viable or apoptotic cells and by the analysis of cleavage of poly (ADP-ribose) polymerase. Furthermore, in vivo administration of Ad.hTRAIL at the site of tumor implantation suppressed the outgrowth of human glioma xenografts in SCID mice. These results further define Ad.hTRAIL as an anti-tumor therapeutic and demonstrate its potential use as an alternative approach to treatment for malignant glioma
    corecore