15 research outputs found

    What is a soundscape intervention? Exploring definitions and identification criteria and a platform to gather real-world examples

    Get PDF
    Possible definitions for the concept of “soundscape intervention” and criteria that could be used to identify stages in a design-oriented framework are discussed. This is in line with the Part 4 of the ISO 12913 series on soundscape being currently developed. For some time already, the soundscape concept has attracted attention from policymakers and practitioners of the built environment, as it advocates for more engagement with local communities in design processes. This is reflected in several documents published by national and international agencies calling for consultation and participation of the public in the definition of soundscape interventions. However, this intended framework is still trying to bridge a gap with the planning and design community, possibly for the lack of conspicuous empirical evidence (i.e., case studies and success stories) showing the benefits provided by the soundscape approach, and some lack of consensus about what a “soundscape intervention” is in the first place. Therefore, an online platform will be presented that can be used for data collection of soundscape intervention examples. This relates to the preliminary stage of a project called “Catalogue of Soundscape Interventions (CSI)”, which has the long-term goal of observing frequent/recurring situations or strategies that can be collated into design toolkits and formulate design briefs that local authorities will be using to communicate with soundscape consultants

    Odes of Horace Book II Ode 13

    No full text

    Odes of Horace Book III Ode 30

    No full text

    A 15-year record of CO emissions constrained by MOPITT CO observations

    No full text
    Long-term measurements from satellites and surface stations have demonstrated a decreasing trend of tropospheric carbon monoxide (CO) in the Northern Hemisphere over the past decade. Likely explanations for this decrease include changes in anthropogenic, fires, and/or biogenic emissions or changes in the primary chemical sink hydroxyl radical (OH). Using remotely sensed CO measurements from the Measurement of Pollution in the Troposphere (MOPITT) satellite instrument, in situ methyl chloroform (MCF) measurements from the World Data Centre for Greenhouse Gases (WDCGG) and the adjoint of the GEOS-Chem model, we estimate the change in global CO emissions from 2001 to 2015. We show that the loss rate of MCF varied by 0.2 % in the past 15 years, indicating that changes in global OH distributions do not explain the recent decrease in CO. Our two-step inversion approach for estimating CO emissions is intended to mitigate the effect of bias errors in the MOPITT data as well as model errors in transport and chemistry, which are the primary factors contributing to the uncertainties when quantifying CO emissions using these remotely sensed data. Our results confirm that the decreasing trend of tropospheric CO in the Northern Hemisphere is due to decreasing CO emissions from anthropogenic and biomass burning sources. In particular, we find decreasing CO emissions from the United States and China in the past 15 years, and unchanged anthropogenic CO emissions from Europe since 2008. We find decreasing trends of biomass burning CO emissions from boreal North America, boreal Asia and South America, but little change over Africa. In contrast to prior results, we find that a positive trend in CO emissions is likely for India and southeast Asia.National Science Foundation; National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) Program; Canadian Space Agency (CSA); Natural Sciences and Engineering Research Council (NSERC); Environment CanadaThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    S-100B and FDG-PET/CT in therapy response assessment of melanoma patients

    Full text link
    OBJECTIVE: To compare the value of the tumor marker S-100B protein and fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) in patients treated for melanoma metastases. METHODS: In 41 patients with proven melanoma metastases, S-100B measurements and FDG-PET/CT were performed before and after therapy. The change of S-100B levels (DeltaS-100B) was assessed. In all patients, therapy response was assessed with PET/CT using visual criteria and change of maximal standard uptake value (DeltaSUV(max.)) or total lesion glycolysis (DeltaTLG). RESULTS: In 15 of 41 patients (37%), S-100B values were not suitable because they were normal before and after therapy. In 26 patients, S-100B was suitable for therapy response assessment. PET/CT was suitable for response assessment in all patients. Correlations between DeltaS-100B and DeltaTLG (r = 0.850, p < 0.001) and between DeltaS-100B and DeltaSUV(max.) (r = 0.818, p < 0.001) were both excellent. A complete agreement between S-100B and PET/CT response assessment was achieved in 22 of 26 patients. In 4 patients, therapy response differed between the S-100B and PET/CT findings, but subsequent S-100B measurements realigned the S-100B results with the later PET/CT findings. CONCLUSION: In a third of our patients with metastases, the S-100B tumor marker was not suitable for therapy assessment. In these patients, imaging techniques remain necessary, and FDG-PET/CT can be used for response assessment

    Decadal Variabilities in Tropospheric Nitrogen Oxides Over United States, Europe, and China

    No full text
    Global trends in tropospheric nitrogen dioxide (NO2) have changed dramatically in the past decade. Here, we investigate tropospheric NO2 variabilities over United States, Europe, and E. China in 2005–2018 to explore the mechanisms governing the variation of this critical pollutant. We found large uncertainties in the trends of anthropogenic nitrogen oxides (NOx) emissions, for example, the reductions of NOx emissions, derived with different approaches and data sets, are in the range of 35%–50% over the United States and 15%–45% over Europe in 2005–2018. By contrast, the analysis in this work indicates declines of anthropogenic NOx emissions by about 40% and 25% over the United States and Europe, respectively, in 2005–2018, and about 20% over E. China in 2012–2018. However, the shift of major NOx sources from power generation to industrial and transportation sectors has led to noticeable diminishing effects in emission controls. Furthermore, satellite measurements exhibit the influence of NO2 background levels over the United States and Europe, which offset the impacts of anthropogenic emission declines, resulting in flatter trends of tropospheric NO2 over the United States and Europe. Our analysis further reveals underestimation of background NO2 by chemical transport models, which can lead to inaccurate interpretations of satellite measurements. We use surface in-situ NO2 observations to diagnose the satellite-observed NO2 trends and find top-down NOx emissions over urban grids represent the changes in anthropogenic NOx emissions better. This work highlights the importance of comprehensive applications of different analysis approaches to better characterizing atmospheric composition evolution

    Tumour assessment in advanced melanoma: value of FDG-PET/CT in patients with elevated serum S-100B

    Full text link
    PURPOSE: To evaluate the usefulness of PET/CT in melanoma patients with an elevated serum S-100B tumour marker level. METHODS: Out of 165 consecutive high-risk melanoma patients referred for PET/CT imaging, 47 had elevated (>0.2 microg/l) S-100B serum levels and a contemporaneous 18F-FDG PET/CT scan. PET/CT scans were evaluated for the presence of metastases. To produce a composite reference standard, we used cytological, histological, MRI and PET/CT follow-up findings as well as clinical and S-100B follow-up. RESULTS: Among the 47 patients with increased S-100B levels, PET/CT correctly identified metastases in 38 (30 distant metastases and eight lymph node metastases). In one patient with cervical lymph node metastases, PET/CT was negative. Eight patients had no metastases and PET/CT correctly excluded metastases in all of them. Overall sensitivity for metastases was 97% (38/39), specificity 100% (8/8) and accuracy 98% (46/47). S-100B was significantly higher in patients with distant metastases (mean 1.93 microg/l, range 0.3-14.3 microg/l) than in patients with lymph node metastases (mean 0.49 microg/l, range 0.3-1.6 microg/l, p=0.003) or patients without metastases (mean 0.625 microg/l, range 0.3-2.6 microg/l, p=0.007). However, 6 of 14 patients with a tumour marker level of 0.3 microg/l had no metastases. CONCLUSION: In melanoma patients with elevated S-100B tumour marker levels, FDG-PET/CT accurately identifies lymph node or distant metastases and reliably excludes metastases. Because of the significant number of false positive S-100B tumour marker determinations (17%), we recommend repetition of tumour marker measurements if elevated S-100B levels occur before extensive imaging is used

    Societal shifts due to COVID-19 reveal large-scale complexities and feedbacks between atmospheric chemistry and climate change.

    No full text
    The COVID-19 global pandemic and associated government lockdowns dramatically altered human activity, providing a window into how changes in individual behavior, enacted en masse, impact atmospheric composition. The resulting reductions in anthropogenic activity represent an unprecedented event that yields a glimpse into a future where emissions to the atmosphere are reduced. Furthermore, the abrupt reduction in emissions during the lockdown periods led to clearly observable changes in atmospheric composition, which provide direct insight into feedbacks between the Earth system and human activity. While air pollutants and greenhouse gases share many common anthropogenic sources, there is a sharp difference in the response of their atmospheric concentrations to COVID-19 emissions changes, due in large part to their different lifetimes. Here, we discuss several key takeaways from modeling and observational studies. First, despite dramatic declines in mobility and associated vehicular emissions, the atmospheric growth rates of greenhouse gases were not slowed, in part due to decreased ocean uptake of CO2 and a likely increase in CH4 lifetime from reduced NO x emissions. Second, the response of O3 to decreased NO x emissions showed significant spatial and temporal variability, due to differing chemical regimes around the world. Finally, the overall response of atmospheric composition to emissions changes is heavily modulated by factors including carbon-cycle feedbacks to CH4 and CO2, background pollutant levels, the timing and location of emissions changes, and climate feedbacks on air quality, such as wildfires and the ozone climate penalty
    corecore