174 research outputs found

    Exploring the SDSS Dataset with Linked Scatter Plots: I. EMP, CEMP, and CV Stars

    Get PDF
    We present the results of a search for extremely metal-poor (EMP), carbon-enhanced metal-poor (CEMP), and cataclysmic variable (CV) stars using a new exploration tool based on linked scatter plots (LSPs). Our approach is especially designed to work with very large spectrum data sets such as the SDSS, LAMOST, RAVE, and Gaia data sets, and it can be applied to stellar, galaxy, and quasar spectra. As a demonstration, we conduct our search using the SDSS DR10 data set. We first created a 3326-dimensional phase space containing nearly 2 billion measures of the strengths of over 1600 spectral features in 569,738 SDSS stars. These measures capture essentially all the stellar atomic and molecular species visible at the resolution of SDSS spectra. We show how LSPs can be used to quickly isolate and examine interesting portions of this phase space. To illustrate, we use LSPs coupled with cuts in selected portions of phase space to extract EMP stars, CEMP stars, and CV stars. We present identifications for 59 previously unrecognized candidate EMP stars and 11 previously unrecognized candidate CEMP stars. We also call attention to 2 candidate He~II emission CV stars found by the LSP approach that have not yet been discussed in the literature.Comment: Accepted by the Astrophysical Journal Supplement (February 2017

    Discovery of a Transiting Planet Near the Snow-Line

    Full text link
    In most theories of planet formation, the snow-line represents a boundary between the emergence of the interior rocky planets and the exterior ice giants. The wide separation of the snow-line makes the discovery of transiting worlds challenging, yet transits would allow for detailed subsequent characterization. We present the discovery of Kepler-421b, a Uranus-sized exoplanet transiting a G9/K0 dwarf once every 704.2 days in a near-circular orbit. Using public Kepler photometry, we demonstrate that the two observed transits can be uniquely attributed to the 704.2 day period. Detailed light curve analysis with BLENDER validates the planetary nature of Kepler-421b to >4 sigmas confidence. Kepler-421b receives the same insolation as a body at ~2AU in the Solar System and for a Uranian albedo would have an effective temperature of ~180K. Using a time-dependent model for the protoplanetary disk, we estimate that Kepler-421b's present semi-major axis was beyond the snow-line after ~3Myr, indicating that Kepler-421b may have formed at its observed location.Comment: 14 pages, 10 figures, 3 tables. Accepted in Ap

    K2-231 b: A sub-Neptune exoplanet transiting a solar twin in Ruprecht 147

    Get PDF
    We identify a sub-Neptune exoplanet (Rp=2.5±0.2R_p = 2.5 \pm 0.2 R⊕_\oplus) transiting a solar twin in the Ruprecht 147 star cluster (3 Gyr, 300 pc, [Fe/H] = +0.1 dex). The ~81 day light curve for EPIC 219800881 (V = 12.71) from K2 Campaign 7 shows six transits with a period of 13.84 days, a depth of ~0.06%, and a duration of ~4 hours. Based on our analysis of high-resolution MIKE spectra, broadband optical and NIR photometry, the cluster parallax and interstellar reddening, and isochrone models from PARSEC, Dartmouth, and MIST, we estimate the following properties for the host star: M⋆=1.01±0.03M_\star = 1.01 \pm 0.03 M⊙_\odot, R⋆=0.95±0.03R_\star= 0.95 \pm 0.03 R⊙_\odot, and Teff=5695±50T_{\rm eff} = 5695 \pm 50 K. This star appears to be single, based on our modeling of the photometry, the low radial velocity variability measured over nearly ten years, and Keck/NIRC2 adaptive optics imaging and aperture-masking interferometry. Applying a probabilistic mass-radius relation, we estimate that the mass of this planet is Mp=7+5−3M_p = 7 +5 -3 M⊕_\oplus, which would cause a RV semi-amplitude of K=2±1K = 2 \pm 1 m s−1^{-1} that may be measurable with existing precise RV facilities. After statistically validating this planet with BLENDER, we now designate it K2-231 b, making it the second sub-stellar object to be discovered in Ruprecht 147 and the first planet; it joins the small but growing ranks of 23 other planets found in open clusters.Comment: 24 pages, 7 figures, light curve included as separate fil

    Measuring Transit Signal Recovery in the Kepler Pipeline. III. Completeness of the Q1-Q17 DR24 Planet Candidate Catalogue, with Important Caveats for Occurrence Rate Calculations

    Get PDF
    With each new version of the Kepler pipeline and resulting planet candidate catalogue, an updated measurement of the underlying planet population can only be recovered with an corresponding measurement of the Kepler pipeline detection efficiency. Here, we present measurements of the sensitivity of the pipeline (version 9.2) used to generate the Q1-Q17 DR24 planet candidate catalog (Coughlin et al. 2016). We measure this by injecting simulated transiting planets into the pixel-level data of 159,013 targets across the entire Kepler focal plane, and examining the recovery rate. Unlike previous versions of the Kepler pipeline, we find a strong period dependence in the measured detection efficiency, with longer (>40 day) periods having a significantly lower detectability than shorter periods, introduced in part by an incorrectly implemented veto. Consequently, the sensitivity of the 9.2 pipeline cannot be cast as a simple one-dimensional function of the signal strength of the candidate planet signal as was possible for previous versions of the pipeline. We report on the implications for occurrence rate calculations based on the Q1-Q17 DR24 planet candidate catalog and offer important caveats and recommendations for performing such calculations. As before, we make available the entire table of injected planet parameters and whether they were recovered by the pipeline, enabling readers to derive the pipeline detection sensitivity in the planet and/or stellar parameter space of their choice.Comment: 8 pages, 5 figures, full electronic version of Table 1 available at the NASA Exoplanet Archive; accepted by ApJ May 2nd, 201

    Detection of Potential Transit Signals in Sixteen Quarters of Kepler Mission Data

    Full text link
    We present the results of a search for potential transit signals in four years of photometry data acquired by the Kepler Mission. The targets of the search include 111,800 stars which were observed for the entire interval and 85,522 stars which were observed for a subset of the interval. We found that 9,743 targets contained at least one signal consistent with the signature of a transiting or eclipsing object, where the criteria for detection are periodicity of the detected transits, adequate signal-to-noise ratio, and acceptance by a number of tests which reject false positive detections. When targets that had produced a signal were searched repeatedly, an additional 6,542 signals were detected on 3,223 target stars, for a total of 16,285 potential detections. Comparison of the set of detected signals with a set of known and vetted transit events in the Kepler field of view shows that the recovery rate for these signals is 96.9%. The ensemble properties of the detected signals are reviewed.Comment: Accepted by ApJ Supplemen
    • …
    corecore